Summary: | <p>Abstract</p> <p>Background</p> <p>Regulation of gene expression plays important role in cellular functions. Co-regulation of different genes may indicate functional connection or even physical interaction between gene products. Thus analysis on genomic structures that may affect gene expression regulation could shed light on the functions of genes.</p> <p>Results</p> <p>In a whole genome analysis of alternative splicing events, we found that two distinct genes, <it>copine I </it>(<it>CPNE1</it>) and <it>RNA binding motif protein 12 </it>(<it>RBM12</it>), share the most 5' exons and therefore the promoter region in human. Further analysis identified many gene pairs in human genome that share the same promoters and 5' exons but have totally different coding sequences. Analysis of genomic and expressed sequences, either cDNAs or expressed sequence tags (ESTs) for <it>CPNE1 </it>and <it>RBM12</it>, confirmed the conservation of this phenomenon during evolutionary courses. The co-expression of the two genes initiated from the same promoter is confirmed by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) in different tissues in both human and mouse. High degrees of sequence conservation among multiple species in the 5'UTR region common to <it>CPNE1 </it>and <it>RBM12 </it>were also identified.</p> <p>Conclusion</p> <p>Promoter and 5'UTR sharing between <it>CPNE1 </it>and <it>RBM12 </it>is observed in human, mouse and zebrafish. Conservation of this genomic structure in evolutionary courses indicates potential functional interaction between the two genes. More than 20 other gene pairs in human genome were found to have the similar genomic structure in a genome-wide analysis, and it may represent a unique pattern of genomic arrangement that may affect expression regulation of the corresponding genes.</p>
|