Polynomial stability of evolution operators in Banach spaces

The paper considers three concepts of polynomial stability for linear evolution operators which are defined in a general Banach space and whose norms can increase not faster than exponentially. Our approach is based on the extension of techniques for exponential stability to the case of polynomial s...

Full description

Bibliographic Details
Main Authors: Megan Mihail, Traian Ceauşu, Magda Luminiţa Ramneanţu
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2011-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol31/2/art/opuscula_math_3119.pdf
Description
Summary:The paper considers three concepts of polynomial stability for linear evolution operators which are defined in a general Banach space and whose norms can increase not faster than exponentially. Our approach is based on the extension of techniques for exponential stability to the case of polynomial stability. Some illustrating examples clarify the relations between the stability concepts considered in paper. The obtained results are generalizations of well-known theorems about the uniform and nonuniform exponential stability.
ISSN:1232-9274