Spectrum-Aware Energy Efficiency Analysis in <i>K</i>-tier 5G HetNets

In future multi-tier cellular networks, cognitive radio (CR) compatible with device-to-device (D2D) communication can be an aid to enhance system spectral efficiency (SE) and energy efficiency (EE). Users in proximity can establish a direct connection with D2D communication and bypass the base stati...

Full description

Bibliographic Details
Main Authors: Fereidoun H. Panahi, Farzad H. Panahi, Tomoaki Ohtsuki
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/7/839
Description
Summary:In future multi-tier cellular networks, cognitive radio (CR) compatible with device-to-device (D2D) communication can be an aid to enhance system spectral efficiency (SE) and energy efficiency (EE). Users in proximity can establish a direct connection with D2D communication and bypass the base stations (BSs), thereby offloading the network infrastructure and providing EE improvement. We use stochastic geometry to model and analyze cognitive D2D communication underlying a multi-tier/multi-channel cellular network where the D2D transmitters are capable of harvesting RF energy from ambient interference resulting from simultaneous cellular downlink transmissions. For further improvement in EE, small cells (SCs) can be put into a power-saving mode by specifying a load-dependent transmission power coefficient (TPC) for SC BSs. In addition, to consider practical D2D communication scenarios, we propose a wireless video sharing framework where cache-enabled users can store and exchange popular video files through D2D communication. We investigate the potential effects of the TPC and the introduced D2D layer on the network EE and SE. We will also observe that the energy-harvesting CR-based D2D communication network design will not only ease the spectrum shortage problem but will also result in a greener network thanks to its reliance on ambient energies.
ISSN:2079-9292