The Evolution of Vicia ramuliflora (Fabaceae) at Tetraploid and Diploid Levels Revealed with FISH and RAPD.

Vicia ramuliflora L. is a widely distributed species in Eurasia with high economic value. For past 200 years, it has evolved a tetraploid cytotype and new subspecies at the diploid level. Based on taxonomy, cytogeography and other lines of evidence, previous studies have provided valuable informatio...

Full description

Bibliographic Details
Main Authors: Ying Han, Yuan Liu, Haoyou Wang, Xiangjun Liu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5279728?pdf=render
Description
Summary:Vicia ramuliflora L. is a widely distributed species in Eurasia with high economic value. For past 200 years, it has evolved a tetraploid cytotype and new subspecies at the diploid level. Based on taxonomy, cytogeography and other lines of evidence, previous studies have provided valuable information about the evolution of V. ramuliflora ploidy level, but due to the limited resolution of traditional methods, important questions remain. In this study, fluorescence in situ hybridization (FISH) and random amplified polymorphic DNA (RAPD) were used to analyze the evolution of V. ramuliflora at the diploid and tetraploid levels. Our aim was to reveal the genomic constitution and parents of the tetraploid V. ramuliflora and the relationships among diploid V. ramuliflora populations. Our study showed that the tetraploid cytotype of V. ramuliflora at Changbai Mountains (M) has identical 18S and 5S rDNA distribution patterns with the diploid Hengdaohezi population (B) and the diploid Dailing population (H). However, UPGMA clustering, Neighbor-Joining clustering and principal coordinates analysis based on RAPD showed that the tetraploid cytotype (M) has more close relationships with Qianshan diploid population T. Based on our results and the fact that interspecific hybridization among Vicia species is very difficult, we think that the tetraploid V. ramuliflora is an autotetraploid and its genomic origin still needs further study. In addition, our study also found that Qianshan diploid population (T) had evolved distinct new traits compared with other diploid populations, which hints that V. ramuliflora evolved further at diploid level. We suggest that diploid population T be re-classified as a new subspecies.
ISSN:1932-6203