Performance of planar heterojunction perovskite solar cells under light concentration

In this work, we present 2D simulation of planar heterojunction perovskite solar cells under high concentration using physics-based TCAD. The performance of planar perovskite heterojunction solar cells is examined up to 1000 suns. We analyze the effect of HTM mobility and band structure, surface rec...

Full description

Bibliographic Details
Main Authors: Aaesha Alnuaimi, Ibraheem Almansouri, Ammar Nayfeh
Format: Article
Language:English
Published: AIP Publishing LLC 2016-11-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4967429
Description
Summary:In this work, we present 2D simulation of planar heterojunction perovskite solar cells under high concentration using physics-based TCAD. The performance of planar perovskite heterojunction solar cells is examined up to 1000 suns. We analyze the effect of HTM mobility and band structure, surface recombination velocities at interfaces and the effect of series resistance under concentrated light. The simulation results revealed that the low mobility of HTM material limits the improvement in power conversation efficiency of perovskite solar cells under concentration. In addition, large band offset at perovskite/HTM interface contributes to the high series resistance. Moreover, losses due to high surface recombination at interfaces and the high series resistance deteriorate significantly the performance of perovskite solar cells under concentration.
ISSN:2158-3226