Summary: | Este ensaio teórico tem por objetivo tratar da invenção matemática discutida por Jacques Hadamard e relacioná-lo à prática docente, a partir dos fenômenos didáticos existentes. Justifica esta pesquisa, o fato de que se a matemática é uma invenção ou criação, e este pressuposto precisa estar evidenciado nos objetivos do ensino, pois, em geral, os docentes almejam que os estudantes aprendam conteúdos clássicos e prontos para serem apropriados por eles. Na parte 2 do texto, apresenta-se o conceito definido por Hadamard sobre a invenção matemática, descrevendo as suas quatro fases: a preparação, a incubação, a iluminação e a verificação; e analisar, na perspectiva do autor, o papel do inconsciente na iluminação matemática, apoiado, sobretudo, no testemunho de Poincaré. Na parte 3, trata-se dos fenômenos didáticos que ocorrem na sala de aula de matemática (transposição e contrato) e seus papéis para a aprendizagem autônoma do aluno. A metodologia da pesquisa é bibliográfica e documental. Temos como principal contribuição a influência exercida pelos fenômenos, evidenciando que não basta adequar o saber a ser ensinado, mas também de verificar o que é efetivamente aprendido. A conclusão destaca que a aprendizagem, como fenômeno que se dá em primeira pessoa, exige a autonomia do aluno e, consequentemente, é necessário estimular seu potencial de criatividade que, ao invés de se contentar de se apropriar dos conteúdos produzidos por especialistas, procure construir seu próprio saber matemático, incentivando-o a ser, por sua vez, um inventor ou criador de soluções próprias.
|