A Simple and Accurate Apollo-Trained Neural Network Controller for Mars Atmospheric Entry
We present a new method to design the controller for Mars capsule atmospheric entry using deep neural networks and flight-proven Apollo entry data. The controller is trained to modulate the bank angle with data from the Apollo entry simulations. The neural network controller reproduces the classical...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | International Journal of Aerospace Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/3793740 |