Development of an Intelligent Decision Support System for Attaining Sustainable Growth within a Life Insurance Company
Consumer behaviour is one of the most important and complex areas of research. It acknowledges the buying behaviour of consumer clusters towards any product, such as life insurance policies. Among various factors, the three most well-known determinants on which human conjecture depends for preferrin...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-06-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/12/1369 |
id |
doaj-330c91c726284027bbea9ff82785c859 |
---|---|
record_format |
Article |
spelling |
doaj-330c91c726284027bbea9ff82785c8592021-07-01T00:04:27ZengMDPI AGMathematics2227-73902021-06-0191369136910.3390/math9121369Development of an Intelligent Decision Support System for Attaining Sustainable Growth within a Life Insurance CompanyMohammad Farhan Khan0Farnaz Haider1Ahmed Al-Hmouz2Mohammad Mursaleen3School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UKDepartment of Agricultural Economics and Business Management, Aligarh Muslim University, Aligarh 202002, IndiaDepartment of Computer Information Systems, Middle East University, Amman 11831, JordanDepartment of Medical Research, China Medical University Hospital, China Medical University (Taiwan), Taichung 40402, TaiwanConsumer behaviour is one of the most important and complex areas of research. It acknowledges the buying behaviour of consumer clusters towards any product, such as life insurance policies. Among various factors, the three most well-known determinants on which human conjecture depends for preferring a product are demographic, economic and psychographic factors, which can help in developing an accurate market design and strategy for the sustainable growth of a company. In this paper, the study of customer satisfaction with regard to a life insurance company is presented, which focused on comparing artificial intelligence-based, data-driven approaches to classical market segmentation approaches. In this work, an artificial intelligence-based decision support system was developed which utilises the aforementioned factors for the accurate classification of potential buyers. The novelty of this paper lies in developing supervised machine learning models that have a tendency to accurately identify the cluster of potential buyers with the help of demographic, economic and psychographic factors. By considering a combination of the factors that are related to the demographic, economic and psychographic elements, the proposed support vector machine model and logistic regression model-based decision support systems were able to identify the cluster of potential buyers with collective accuracies of 98.82% and 89.20%, respectively. The substantial accuracy of a support vector machine model would be helpful for a life insurance company which needs a decision support system for targeting potential customers and sustaining its share within the market.https://www.mdpi.com/2227-7390/9/12/1369consumer behaviourlife insurancesupport vector machinelogistic regressiondemographic factorseconomic factors |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mohammad Farhan Khan Farnaz Haider Ahmed Al-Hmouz Mohammad Mursaleen |
spellingShingle |
Mohammad Farhan Khan Farnaz Haider Ahmed Al-Hmouz Mohammad Mursaleen Development of an Intelligent Decision Support System for Attaining Sustainable Growth within a Life Insurance Company Mathematics consumer behaviour life insurance support vector machine logistic regression demographic factors economic factors |
author_facet |
Mohammad Farhan Khan Farnaz Haider Ahmed Al-Hmouz Mohammad Mursaleen |
author_sort |
Mohammad Farhan Khan |
title |
Development of an Intelligent Decision Support System for Attaining Sustainable Growth within a Life Insurance Company |
title_short |
Development of an Intelligent Decision Support System for Attaining Sustainable Growth within a Life Insurance Company |
title_full |
Development of an Intelligent Decision Support System for Attaining Sustainable Growth within a Life Insurance Company |
title_fullStr |
Development of an Intelligent Decision Support System for Attaining Sustainable Growth within a Life Insurance Company |
title_full_unstemmed |
Development of an Intelligent Decision Support System for Attaining Sustainable Growth within a Life Insurance Company |
title_sort |
development of an intelligent decision support system for attaining sustainable growth within a life insurance company |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2021-06-01 |
description |
Consumer behaviour is one of the most important and complex areas of research. It acknowledges the buying behaviour of consumer clusters towards any product, such as life insurance policies. Among various factors, the three most well-known determinants on which human conjecture depends for preferring a product are demographic, economic and psychographic factors, which can help in developing an accurate market design and strategy for the sustainable growth of a company. In this paper, the study of customer satisfaction with regard to a life insurance company is presented, which focused on comparing artificial intelligence-based, data-driven approaches to classical market segmentation approaches. In this work, an artificial intelligence-based decision support system was developed which utilises the aforementioned factors for the accurate classification of potential buyers. The novelty of this paper lies in developing supervised machine learning models that have a tendency to accurately identify the cluster of potential buyers with the help of demographic, economic and psychographic factors. By considering a combination of the factors that are related to the demographic, economic and psychographic elements, the proposed support vector machine model and logistic regression model-based decision support systems were able to identify the cluster of potential buyers with collective accuracies of 98.82% and 89.20%, respectively. The substantial accuracy of a support vector machine model would be helpful for a life insurance company which needs a decision support system for targeting potential customers and sustaining its share within the market. |
topic |
consumer behaviour life insurance support vector machine logistic regression demographic factors economic factors |
url |
https://www.mdpi.com/2227-7390/9/12/1369 |
work_keys_str_mv |
AT mohammadfarhankhan developmentofanintelligentdecisionsupportsystemforattainingsustainablegrowthwithinalifeinsurancecompany AT farnazhaider developmentofanintelligentdecisionsupportsystemforattainingsustainablegrowthwithinalifeinsurancecompany AT ahmedalhmouz developmentofanintelligentdecisionsupportsystemforattainingsustainablegrowthwithinalifeinsurancecompany AT mohammadmursaleen developmentofanintelligentdecisionsupportsystemforattainingsustainablegrowthwithinalifeinsurancecompany |
_version_ |
1721349550643347456 |