A Modified Compact Tension Test for Characterization of the Intralaminar Fracture Toughness of Tri-Axial Braided Composites

The application of braided composite materials in the automotive industry requires an in-depth understanding of the mechanical properties. To date, the intralaminar fracture toughness of braided composite materials, typically used for describing post-failure behavior, has not been well-characterized...

Full description

Bibliographic Details
Main Authors: Michael May, Sebastian Kilchert, Tobias Gerster
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/17/4890
Description
Summary:The application of braided composite materials in the automotive industry requires an in-depth understanding of the mechanical properties. To date, the intralaminar fracture toughness of braided composite materials, typically used for describing post-failure behavior, has not been well-characterized experimentally. In this paper, a modified compact tension test, utilizing a relatively large specimen and a metallic loading frame, is used to measure the transverse intralaminar fracture toughness of a tri-axial braided composite. During testing, a relatively long fracture process zone ahead of the crack tip was observed. Crack propagation could be correlated to the failure of individual unit cells, which required failure of bias-yarns. The transverse interlaminar fracture toughness was found to be two orders of magnitude higher than the reference interlaminar fracture toughness of the same material. This is due to the fact, that intralaminar crack propagation requires breaking of fibers, which is not the case for interlaminar testing.
ISSN:1996-1944