Narrow-frequency sharp-angular filters using all-dielectric cascaded meta-gratings
Selective transmission or filtering always responds to either frequency or incident angle, so as hardly to maximize signal-to-noise ratio in communication, detection and sensing. Here, we propose compact meta-filters of narrow-frequency sharp-angular transmission peak along with broad omnidirectiona...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2020-06-01
|
Series: | Nanophotonics |
Subjects: | |
Online Access: | https://doi.org/10.1515/nanoph-2020-0141 |
Summary: | Selective transmission or filtering always responds to either frequency or incident angle, so as hardly to maximize signal-to-noise ratio in communication, detection and sensing. Here, we propose compact meta-filters of narrow-frequency sharp-angular transmission peak along with broad omnidirectional reflection sidebands, in all-dielectric cascaded subwavelength meta-gratings. The inherent collective resonance of waveguide-array modes and thin film approximation of meta-grating are employed as the design strategy. A unity transmission peak, locating at the incident angle of 44.4° and the center wavelength of 1550 nm, is demonstrated in a silicon meta-filter consisting of two-layer silicon rectangular meta-grating. These findings provide possibilities in cascaded meta-gratings spectroscopic design and alternative utilities for high signal-to-noise ratio applications in focus-free spatial filtering and anti-noise systems in telecommunications. |
---|---|
ISSN: | 2192-8606 2192-8614 |