Assessing the impact of aggregating disease stage data in model predictions of human African trypanosomiasis transmission and control activities in Bandundu province (DRC).

Since the turn of the century, the global community has made great progress towards the elimination of gambiense human African trypanosomiasis (HAT). Elimination programs, primarily relying on screening and treatment campaigns, have also created a rich database of HAT epidemiology. Mathematical mode...

Full description

Bibliographic Details
Main Authors: María Soledad Castaño, Martial L Ndeffo-Mbah, Kat S Rock, Cody Palmer, Edward Knock, Erick Mwamba Miaka, Joseph M Ndung'u, Steve Torr, Paul Verlé, Simon E F Spencer, Alison Galvani, Caitlin Bever, Matt J Keeling, Nakul Chitnis
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS Neglected Tropical Diseases
Online Access:https://doi.org/10.1371/journal.pntd.0007976
id doaj-32e60e89887d4072af13f1ff9cad96f0
record_format Article
spelling doaj-32e60e89887d4072af13f1ff9cad96f02021-04-21T23:55:32ZengPublic Library of Science (PLoS)PLoS Neglected Tropical Diseases1935-27271935-27352020-01-01141e000797610.1371/journal.pntd.0007976Assessing the impact of aggregating disease stage data in model predictions of human African trypanosomiasis transmission and control activities in Bandundu province (DRC).María Soledad CastañoMartial L Ndeffo-MbahKat S RockCody PalmerEdward KnockErick Mwamba MiakaJoseph M Ndung'uSteve TorrPaul VerléSimon E F SpencerAlison GalvaniCaitlin BeverMatt J KeelingNakul ChitnisSince the turn of the century, the global community has made great progress towards the elimination of gambiense human African trypanosomiasis (HAT). Elimination programs, primarily relying on screening and treatment campaigns, have also created a rich database of HAT epidemiology. Mathematical models calibrated with these data can help to fill remaining gaps in our understanding of HAT transmission dynamics, including key operational research questions such as whether integrating vector control with current intervention strategies is needed to achieve HAT elimination. Here we explore, via an ensemble of models and simulation studies, how including or not disease stage data, or using more updated data sets affect model predictions of future control strategies.https://doi.org/10.1371/journal.pntd.0007976
collection DOAJ
language English
format Article
sources DOAJ
author María Soledad Castaño
Martial L Ndeffo-Mbah
Kat S Rock
Cody Palmer
Edward Knock
Erick Mwamba Miaka
Joseph M Ndung'u
Steve Torr
Paul Verlé
Simon E F Spencer
Alison Galvani
Caitlin Bever
Matt J Keeling
Nakul Chitnis
spellingShingle María Soledad Castaño
Martial L Ndeffo-Mbah
Kat S Rock
Cody Palmer
Edward Knock
Erick Mwamba Miaka
Joseph M Ndung'u
Steve Torr
Paul Verlé
Simon E F Spencer
Alison Galvani
Caitlin Bever
Matt J Keeling
Nakul Chitnis
Assessing the impact of aggregating disease stage data in model predictions of human African trypanosomiasis transmission and control activities in Bandundu province (DRC).
PLoS Neglected Tropical Diseases
author_facet María Soledad Castaño
Martial L Ndeffo-Mbah
Kat S Rock
Cody Palmer
Edward Knock
Erick Mwamba Miaka
Joseph M Ndung'u
Steve Torr
Paul Verlé
Simon E F Spencer
Alison Galvani
Caitlin Bever
Matt J Keeling
Nakul Chitnis
author_sort María Soledad Castaño
title Assessing the impact of aggregating disease stage data in model predictions of human African trypanosomiasis transmission and control activities in Bandundu province (DRC).
title_short Assessing the impact of aggregating disease stage data in model predictions of human African trypanosomiasis transmission and control activities in Bandundu province (DRC).
title_full Assessing the impact of aggregating disease stage data in model predictions of human African trypanosomiasis transmission and control activities in Bandundu province (DRC).
title_fullStr Assessing the impact of aggregating disease stage data in model predictions of human African trypanosomiasis transmission and control activities in Bandundu province (DRC).
title_full_unstemmed Assessing the impact of aggregating disease stage data in model predictions of human African trypanosomiasis transmission and control activities in Bandundu province (DRC).
title_sort assessing the impact of aggregating disease stage data in model predictions of human african trypanosomiasis transmission and control activities in bandundu province (drc).
publisher Public Library of Science (PLoS)
series PLoS Neglected Tropical Diseases
issn 1935-2727
1935-2735
publishDate 2020-01-01
description Since the turn of the century, the global community has made great progress towards the elimination of gambiense human African trypanosomiasis (HAT). Elimination programs, primarily relying on screening and treatment campaigns, have also created a rich database of HAT epidemiology. Mathematical models calibrated with these data can help to fill remaining gaps in our understanding of HAT transmission dynamics, including key operational research questions such as whether integrating vector control with current intervention strategies is needed to achieve HAT elimination. Here we explore, via an ensemble of models and simulation studies, how including or not disease stage data, or using more updated data sets affect model predictions of future control strategies.
url https://doi.org/10.1371/journal.pntd.0007976
work_keys_str_mv AT mariasoledadcastano assessingtheimpactofaggregatingdiseasestagedatainmodelpredictionsofhumanafricantrypanosomiasistransmissionandcontrolactivitiesinbandunduprovincedrc
AT martiallndeffombah assessingtheimpactofaggregatingdiseasestagedatainmodelpredictionsofhumanafricantrypanosomiasistransmissionandcontrolactivitiesinbandunduprovincedrc
AT katsrock assessingtheimpactofaggregatingdiseasestagedatainmodelpredictionsofhumanafricantrypanosomiasistransmissionandcontrolactivitiesinbandunduprovincedrc
AT codypalmer assessingtheimpactofaggregatingdiseasestagedatainmodelpredictionsofhumanafricantrypanosomiasistransmissionandcontrolactivitiesinbandunduprovincedrc
AT edwardknock assessingtheimpactofaggregatingdiseasestagedatainmodelpredictionsofhumanafricantrypanosomiasistransmissionandcontrolactivitiesinbandunduprovincedrc
AT erickmwambamiaka assessingtheimpactofaggregatingdiseasestagedatainmodelpredictionsofhumanafricantrypanosomiasistransmissionandcontrolactivitiesinbandunduprovincedrc
AT josephmndungu assessingtheimpactofaggregatingdiseasestagedatainmodelpredictionsofhumanafricantrypanosomiasistransmissionandcontrolactivitiesinbandunduprovincedrc
AT stevetorr assessingtheimpactofaggregatingdiseasestagedatainmodelpredictionsofhumanafricantrypanosomiasistransmissionandcontrolactivitiesinbandunduprovincedrc
AT paulverle assessingtheimpactofaggregatingdiseasestagedatainmodelpredictionsofhumanafricantrypanosomiasistransmissionandcontrolactivitiesinbandunduprovincedrc
AT simonefspencer assessingtheimpactofaggregatingdiseasestagedatainmodelpredictionsofhumanafricantrypanosomiasistransmissionandcontrolactivitiesinbandunduprovincedrc
AT alisongalvani assessingtheimpactofaggregatingdiseasestagedatainmodelpredictionsofhumanafricantrypanosomiasistransmissionandcontrolactivitiesinbandunduprovincedrc
AT caitlinbever assessingtheimpactofaggregatingdiseasestagedatainmodelpredictionsofhumanafricantrypanosomiasistransmissionandcontrolactivitiesinbandunduprovincedrc
AT mattjkeeling assessingtheimpactofaggregatingdiseasestagedatainmodelpredictionsofhumanafricantrypanosomiasistransmissionandcontrolactivitiesinbandunduprovincedrc
AT nakulchitnis assessingtheimpactofaggregatingdiseasestagedatainmodelpredictionsofhumanafricantrypanosomiasistransmissionandcontrolactivitiesinbandunduprovincedrc
_version_ 1714663874370732032