<em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces

Let <em>G</em> be a transformation group and act on <em>X</em>. Any elements <em>x, y</em> ∈ <em>X</em> are called the <em>G</em>-equivalent elements if there exist a transformation <em>g</em> ∈ <em>G</em> such that...

Full description

Bibliographic Details
Main Author: Muhsin Incesu
Format: Article
Language:English
Published: AIMS Press 2020-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2020084/fulltext.html
id doaj-32dae89b511c4c1d9ca22b887ba08a34
record_format Article
spelling doaj-32dae89b511c4c1d9ca22b887ba08a342020-11-25T01:57:34ZengAIMS PressAIMS Mathematics2473-69882020-01-01521216124610.3934/math.2020084<em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfacesMuhsin Incesu0Department of Mathematics Education, Mus Alparslan University, Mus, 49100, TurkryLet <em>G</em> be a transformation group and act on <em>X</em>. Any elements <em>x, y</em> ∈ <em>X</em> are called the <em>G</em>-equivalent elements if there exist a transformation <em>g</em> ∈ <em>G</em> such that <em>y</em> = <em>gx</em> is satisfied. Similarly let <em>A</em> = {<em>x</em><sub>1</sub>, <em>x</em><sub>2</sub>, …, <em>x</em><sub><em>n</em></sub>} and <em>B</em> = {<em>y</em><sub>1</sub>, <em>y</em><sub>2</sub>, …, <em>y</em><sub><em>n</em></sub>} be any two subspaces of <em>X</em> with <em>n</em>-elements. Then the subspaces <em>A</em> and <em>B</em> are called the <em>G</em>-equivalent subspaces if there exist a transformation <em>g</em> ∈ <em>G</em> such that <em>y</em><sub><em>i</em></sub> = <em>gx</em><sub><em>i</em></sub> is satisfied for every <em>i</em> = 1, 2, …, <em>n</em>.<br /> The linear similarity transformations’ group in 3 dimensional Euclidean space will be denoted by <em>LS</em> (3). This paper presents the <em>G</em>-equivalence conditions of the subspaces <em>A</em> and <em>B</em> of 3-dimensional Euclidean space <em>E</em><sup>3</sup> with <em>m</em>-elements where the transformation group <em>G</em> = <em>LS</em> (3) is the linear similarity transformation group in <em>E</em><sup>3</sup>. Later the <em>G</em> = <em>LS</em> (3)-equivalence conditions of Bézier curves and surfaces are studied in terms of the rational <em>G</em> = <em>LS</em> (3) invariants of their control points. Finally by using quadratic Bézier curves, a simple letter “S” is designed and two different shadow curves of this letter (composite curves) are obtained. Then it is emphasized that these shadow curves are <em>G</em> = <em>LS</em> (3)-equivalent to designed letter “S”.https://www.aimspress.com/article/10.3934/math.2020084/fulltext.htmllinear similarityls(3)-equivalencepoints systemsgenerator invariantsbézier curvesbézier surfacesfont design
collection DOAJ
language English
format Article
sources DOAJ
author Muhsin Incesu
spellingShingle Muhsin Incesu
<em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces
AIMS Mathematics
linear similarity
ls(3)-equivalence
points systems
generator invariants
bézier curves
bézier surfaces
font design
author_facet Muhsin Incesu
author_sort Muhsin Incesu
title <em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces
title_short <em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces
title_full <em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces
title_fullStr <em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces
title_full_unstemmed <em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces
title_sort <em>ls</em> (3)-equivalence conditions of control points and application to spatial bézier curves and surfaces
publisher AIMS Press
series AIMS Mathematics
issn 2473-6988
publishDate 2020-01-01
description Let <em>G</em> be a transformation group and act on <em>X</em>. Any elements <em>x, y</em> ∈ <em>X</em> are called the <em>G</em>-equivalent elements if there exist a transformation <em>g</em> ∈ <em>G</em> such that <em>y</em> = <em>gx</em> is satisfied. Similarly let <em>A</em> = {<em>x</em><sub>1</sub>, <em>x</em><sub>2</sub>, …, <em>x</em><sub><em>n</em></sub>} and <em>B</em> = {<em>y</em><sub>1</sub>, <em>y</em><sub>2</sub>, …, <em>y</em><sub><em>n</em></sub>} be any two subspaces of <em>X</em> with <em>n</em>-elements. Then the subspaces <em>A</em> and <em>B</em> are called the <em>G</em>-equivalent subspaces if there exist a transformation <em>g</em> ∈ <em>G</em> such that <em>y</em><sub><em>i</em></sub> = <em>gx</em><sub><em>i</em></sub> is satisfied for every <em>i</em> = 1, 2, …, <em>n</em>.<br /> The linear similarity transformations’ group in 3 dimensional Euclidean space will be denoted by <em>LS</em> (3). This paper presents the <em>G</em>-equivalence conditions of the subspaces <em>A</em> and <em>B</em> of 3-dimensional Euclidean space <em>E</em><sup>3</sup> with <em>m</em>-elements where the transformation group <em>G</em> = <em>LS</em> (3) is the linear similarity transformation group in <em>E</em><sup>3</sup>. Later the <em>G</em> = <em>LS</em> (3)-equivalence conditions of Bézier curves and surfaces are studied in terms of the rational <em>G</em> = <em>LS</em> (3) invariants of their control points. Finally by using quadratic Bézier curves, a simple letter “S” is designed and two different shadow curves of this letter (composite curves) are obtained. Then it is emphasized that these shadow curves are <em>G</em> = <em>LS</em> (3)-equivalent to designed letter “S”.
topic linear similarity
ls(3)-equivalence
points systems
generator invariants
bézier curves
bézier surfaces
font design
url https://www.aimspress.com/article/10.3934/math.2020084/fulltext.html
work_keys_str_mv AT muhsinincesu emlsem3equivalenceconditionsofcontrolpointsandapplicationtospatialbeziercurvesandsurfaces
_version_ 1724974121990750208