<em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces
Let <em>G</em> be a transformation group and act on <em>X</em>. Any elements <em>x, y</em> ∈ <em>X</em> are called the <em>G</em>-equivalent elements if there exist a transformation <em>g</em> ∈ <em>G</em> such that...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2020-01-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/10.3934/math.2020084/fulltext.html |
id |
doaj-32dae89b511c4c1d9ca22b887ba08a34 |
---|---|
record_format |
Article |
spelling |
doaj-32dae89b511c4c1d9ca22b887ba08a342020-11-25T01:57:34ZengAIMS PressAIMS Mathematics2473-69882020-01-01521216124610.3934/math.2020084<em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfacesMuhsin Incesu0Department of Mathematics Education, Mus Alparslan University, Mus, 49100, TurkryLet <em>G</em> be a transformation group and act on <em>X</em>. Any elements <em>x, y</em> ∈ <em>X</em> are called the <em>G</em>-equivalent elements if there exist a transformation <em>g</em> ∈ <em>G</em> such that <em>y</em> = <em>gx</em> is satisfied. Similarly let <em>A</em> = {<em>x</em><sub>1</sub>, <em>x</em><sub>2</sub>, …, <em>x</em><sub><em>n</em></sub>} and <em>B</em> = {<em>y</em><sub>1</sub>, <em>y</em><sub>2</sub>, …, <em>y</em><sub><em>n</em></sub>} be any two subspaces of <em>X</em> with <em>n</em>-elements. Then the subspaces <em>A</em> and <em>B</em> are called the <em>G</em>-equivalent subspaces if there exist a transformation <em>g</em> ∈ <em>G</em> such that <em>y</em><sub><em>i</em></sub> = <em>gx</em><sub><em>i</em></sub> is satisfied for every <em>i</em> = 1, 2, …, <em>n</em>.<br /> The linear similarity transformations’ group in 3 dimensional Euclidean space will be denoted by <em>LS</em> (3). This paper presents the <em>G</em>-equivalence conditions of the subspaces <em>A</em> and <em>B</em> of 3-dimensional Euclidean space <em>E</em><sup>3</sup> with <em>m</em>-elements where the transformation group <em>G</em> = <em>LS</em> (3) is the linear similarity transformation group in <em>E</em><sup>3</sup>. Later the <em>G</em> = <em>LS</em> (3)-equivalence conditions of Bézier curves and surfaces are studied in terms of the rational <em>G</em> = <em>LS</em> (3) invariants of their control points. Finally by using quadratic Bézier curves, a simple letter “S” is designed and two different shadow curves of this letter (composite curves) are obtained. Then it is emphasized that these shadow curves are <em>G</em> = <em>LS</em> (3)-equivalent to designed letter “S”.https://www.aimspress.com/article/10.3934/math.2020084/fulltext.htmllinear similarityls(3)-equivalencepoints systemsgenerator invariantsbézier curvesbézier surfacesfont design |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Muhsin Incesu |
spellingShingle |
Muhsin Incesu <em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces AIMS Mathematics linear similarity ls(3)-equivalence points systems generator invariants bézier curves bézier surfaces font design |
author_facet |
Muhsin Incesu |
author_sort |
Muhsin Incesu |
title |
<em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces |
title_short |
<em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces |
title_full |
<em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces |
title_fullStr |
<em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces |
title_full_unstemmed |
<em>LS</em> (3)-equivalence conditions of control points and application to spatial Bézier curves and surfaces |
title_sort |
<em>ls</em> (3)-equivalence conditions of control points and application to spatial bézier curves and surfaces |
publisher |
AIMS Press |
series |
AIMS Mathematics |
issn |
2473-6988 |
publishDate |
2020-01-01 |
description |
Let <em>G</em> be a transformation group and act on <em>X</em>. Any elements <em>x, y</em> ∈ <em>X</em> are called the <em>G</em>-equivalent elements if there exist a transformation <em>g</em> ∈ <em>G</em> such that <em>y</em> = <em>gx</em> is satisfied. Similarly let <em>A</em> = {<em>x</em><sub>1</sub>, <em>x</em><sub>2</sub>, …, <em>x</em><sub><em>n</em></sub>} and <em>B</em> = {<em>y</em><sub>1</sub>, <em>y</em><sub>2</sub>, …, <em>y</em><sub><em>n</em></sub>} be any two subspaces of <em>X</em> with <em>n</em>-elements. Then the subspaces <em>A</em> and <em>B</em> are called the <em>G</em>-equivalent subspaces if there exist a transformation <em>g</em> ∈ <em>G</em> such that <em>y</em><sub><em>i</em></sub> = <em>gx</em><sub><em>i</em></sub> is satisfied for every <em>i</em> = 1, 2, …, <em>n</em>.<br />
The linear similarity transformations’ group in 3 dimensional Euclidean space will be denoted by <em>LS</em> (3). This paper presents the <em>G</em>-equivalence conditions of the subspaces <em>A</em> and <em>B</em> of 3-dimensional Euclidean space <em>E</em><sup>3</sup> with <em>m</em>-elements where the transformation group <em>G</em> = <em>LS</em> (3) is the linear similarity transformation group in <em>E</em><sup>3</sup>. Later the <em>G</em> = <em>LS</em> (3)-equivalence conditions of Bézier curves and surfaces are studied in terms of the rational <em>G</em> = <em>LS</em> (3) invariants of their control points. Finally by using quadratic Bézier curves, a simple letter “S” is designed and two different shadow curves of this letter (composite curves) are obtained. Then it is emphasized that these shadow curves are <em>G</em> = <em>LS</em> (3)-equivalent to designed letter “S”. |
topic |
linear similarity ls(3)-equivalence points systems generator invariants bézier curves bézier surfaces font design |
url |
https://www.aimspress.com/article/10.3934/math.2020084/fulltext.html |
work_keys_str_mv |
AT muhsinincesu emlsem3equivalenceconditionsofcontrolpointsandapplicationtospatialbeziercurvesandsurfaces |
_version_ |
1724974121990750208 |