A new three dimensional dissipative Boussinesq equation for Rossby waves and its multiple soliton solutions

A new three dimensional nonlinear dynamic theoretical model is derived from fluid mechanics system. In this paper, From the quasi-geostrophic barotropic potential vorticity equation, we obtain a three dimensional dissipative Boussinesq equation by the reduced perturbation method, i.e.utt+e1uxx+e2(u2...

Full description

Bibliographic Details
Main Authors: Liguo Chen, Feifei Gao, Linlin Li, Liangui Yang
Format: Article
Language:English
Published: Elsevier 2021-07-01
Series:Results in Physics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211379721005118
Description
Summary:A new three dimensional nonlinear dynamic theoretical model is derived from fluid mechanics system. In this paper, From the quasi-geostrophic barotropic potential vorticity equation, we obtain a three dimensional dissipative Boussinesq equation by the reduced perturbation method, i.e.utt+e1uxx+e2(u2)xx+e3utxy+e4uxxxx+e5uxxyy=0. It is emphasized that the new equation is different from the existing Boussinesq equations, which describe the three dimensional nonlinear Rossby waves in the atmosphere. Moreover, we explore the dispersion relation of the linear wave through the new equation. Using the travelling wave method and simplest equation method, the general solution and soliton solutions of the equation are obtained successfully respectively. Finally, the formation mechanism of Rossby waves is discussed by multiple soliton solutions.
ISSN:2211-3797