Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome
Mitochondrial deficits in energy production cause untreatable and fatal pathologies known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and premature death. However,...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
eLife Sciences Publications Ltd
2019-08-01
|
Series: | eLife |
Subjects: | |
Online Access: | https://elifesciences.org/articles/47163 |
id |
doaj-32bf3e6cbd584e239e67faa01e0f2b0e |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Irene Bolea Alejandro Gella Elisenda Sanz Patricia Prada-Dacasa Fabien Menardy Angela M Bard Pablo Machuca-Márquez Abel Eraso-Pichot Guillem Mòdol-Caballero Xavier Navarro Franck Kalume Albert Quintana |
spellingShingle |
Irene Bolea Alejandro Gella Elisenda Sanz Patricia Prada-Dacasa Fabien Menardy Angela M Bard Pablo Machuca-Márquez Abel Eraso-Pichot Guillem Mòdol-Caballero Xavier Navarro Franck Kalume Albert Quintana Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome eLife mitochondrial disease mouse genetics neuropathology cell type-specific |
author_facet |
Irene Bolea Alejandro Gella Elisenda Sanz Patricia Prada-Dacasa Fabien Menardy Angela M Bard Pablo Machuca-Márquez Abel Eraso-Pichot Guillem Mòdol-Caballero Xavier Navarro Franck Kalume Albert Quintana |
author_sort |
Irene Bolea |
title |
Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome |
title_short |
Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome |
title_full |
Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome |
title_fullStr |
Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome |
title_full_unstemmed |
Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome |
title_sort |
defined neuronal populations drive fatal phenotype in a mouse model of leigh syndrome |
publisher |
eLife Sciences Publications Ltd |
series |
eLife |
issn |
2050-084X |
publishDate |
2019-08-01 |
description |
Mitochondrial deficits in energy production cause untreatable and fatal pathologies known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and premature death. However, only specific neuronal populations are affected. Furthermore, their molecular identity and their contribution to the disease remains unknown. Here, using a mouse model of LS lacking the mitochondrial complex I subunit Ndufs4, we dissect the critical role of genetically-defined neuronal populations in LS progression. Ndufs4 inactivation in Vglut2-expressing glutamatergic neurons leads to decreased neuronal firing, brainstem inflammation, motor and respiratory deficits, and early death. In contrast, Ndufs4 deletion in GABAergic neurons causes basal ganglia inflammation without motor or respiratory involvement, but accompanied by hypothermia and severe epileptic seizures preceding death. These results provide novel insight in the cell type-specific contribution to the pathology, dissecting the underlying cellular mechanisms of MD. |
topic |
mitochondrial disease mouse genetics neuropathology cell type-specific |
url |
https://elifesciences.org/articles/47163 |
work_keys_str_mv |
AT irenebolea definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome AT alejandrogella definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome AT elisendasanz definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome AT patriciapradadacasa definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome AT fabienmenardy definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome AT angelambard definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome AT pablomachucamarquez definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome AT abelerasopichot definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome AT guillemmodolcaballero definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome AT xaviernavarro definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome AT franckkalume definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome AT albertquintana definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome |
_version_ |
1721458959570698240 |
spelling |
doaj-32bf3e6cbd584e239e67faa01e0f2b0e2021-05-05T17:50:09ZengeLife Sciences Publications LtdeLife2050-084X2019-08-01810.7554/eLife.47163Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndromeIrene Bolea0https://orcid.org/0000-0001-9591-980XAlejandro Gella1https://orcid.org/0000-0002-3983-1392Elisenda Sanz2https://orcid.org/0000-0002-7932-8556Patricia Prada-Dacasa3https://orcid.org/0000-0003-0689-9072Fabien Menardy4https://orcid.org/0000-0002-8712-1344Angela M Bard5Pablo Machuca-Márquez6https://orcid.org/0000-0002-7980-3839Abel Eraso-Pichot7https://orcid.org/0000-0001-6837-2714Guillem Mòdol-Caballero8Xavier Navarro9https://orcid.org/0000-0001-9849-902XFranck Kalume10https://orcid.org/0000-0002-5528-2565Albert Quintana11https://orcid.org/0000-0003-1674-7160Center for Developmental Therapeutics, Seattle Children’s Research Institute, Seattle, United States; Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, SpainInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, SpainInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, United States; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, SpainInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, SpainInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, SpainCenter for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, United StatesInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, SpainInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, SpainInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, SpainInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, SpainCenter for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, United States; Department of Neurological Surgery, University of Washington, Seattle, United States; Department of Pharmacology, University of Washington, Seattle, United StatesCenter for Developmental Therapeutics, Seattle Children’s Research Institute, Seattle, United States; Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, United States; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Pediatrics, University of Washington, Seattle, United StatesMitochondrial deficits in energy production cause untreatable and fatal pathologies known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and premature death. However, only specific neuronal populations are affected. Furthermore, their molecular identity and their contribution to the disease remains unknown. Here, using a mouse model of LS lacking the mitochondrial complex I subunit Ndufs4, we dissect the critical role of genetically-defined neuronal populations in LS progression. Ndufs4 inactivation in Vglut2-expressing glutamatergic neurons leads to decreased neuronal firing, brainstem inflammation, motor and respiratory deficits, and early death. In contrast, Ndufs4 deletion in GABAergic neurons causes basal ganglia inflammation without motor or respiratory involvement, but accompanied by hypothermia and severe epileptic seizures preceding death. These results provide novel insight in the cell type-specific contribution to the pathology, dissecting the underlying cellular mechanisms of MD.https://elifesciences.org/articles/47163mitochondrial diseasemouse geneticsneuropathologycell type-specific |