Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome

Mitochondrial deficits in energy production cause untreatable and fatal pathologies known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and premature death. However,...

Full description

Bibliographic Details
Main Authors: Irene Bolea, Alejandro Gella, Elisenda Sanz, Patricia Prada-Dacasa, Fabien Menardy, Angela M Bard, Pablo Machuca-Márquez, Abel Eraso-Pichot, Guillem Mòdol-Caballero, Xavier Navarro, Franck Kalume, Albert Quintana
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2019-08-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/47163
id doaj-32bf3e6cbd584e239e67faa01e0f2b0e
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Irene Bolea
Alejandro Gella
Elisenda Sanz
Patricia Prada-Dacasa
Fabien Menardy
Angela M Bard
Pablo Machuca-Márquez
Abel Eraso-Pichot
Guillem Mòdol-Caballero
Xavier Navarro
Franck Kalume
Albert Quintana
spellingShingle Irene Bolea
Alejandro Gella
Elisenda Sanz
Patricia Prada-Dacasa
Fabien Menardy
Angela M Bard
Pablo Machuca-Márquez
Abel Eraso-Pichot
Guillem Mòdol-Caballero
Xavier Navarro
Franck Kalume
Albert Quintana
Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome
eLife
mitochondrial disease
mouse genetics
neuropathology
cell type-specific
author_facet Irene Bolea
Alejandro Gella
Elisenda Sanz
Patricia Prada-Dacasa
Fabien Menardy
Angela M Bard
Pablo Machuca-Márquez
Abel Eraso-Pichot
Guillem Mòdol-Caballero
Xavier Navarro
Franck Kalume
Albert Quintana
author_sort Irene Bolea
title Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome
title_short Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome
title_full Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome
title_fullStr Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome
title_full_unstemmed Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndrome
title_sort defined neuronal populations drive fatal phenotype in a mouse model of leigh syndrome
publisher eLife Sciences Publications Ltd
series eLife
issn 2050-084X
publishDate 2019-08-01
description Mitochondrial deficits in energy production cause untreatable and fatal pathologies known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and premature death. However, only specific neuronal populations are affected. Furthermore, their molecular identity and their contribution to the disease remains unknown. Here, using a mouse model of LS lacking the mitochondrial complex I subunit Ndufs4, we dissect the critical role of genetically-defined neuronal populations in LS progression. Ndufs4 inactivation in Vglut2-expressing glutamatergic neurons leads to decreased neuronal firing, brainstem inflammation, motor and respiratory deficits, and early death. In contrast, Ndufs4 deletion in GABAergic neurons causes basal ganglia inflammation without motor or respiratory involvement, but accompanied by hypothermia and severe epileptic seizures preceding death. These results provide novel insight in the cell type-specific contribution to the pathology, dissecting the underlying cellular mechanisms of MD.
topic mitochondrial disease
mouse genetics
neuropathology
cell type-specific
url https://elifesciences.org/articles/47163
work_keys_str_mv AT irenebolea definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome
AT alejandrogella definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome
AT elisendasanz definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome
AT patriciapradadacasa definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome
AT fabienmenardy definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome
AT angelambard definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome
AT pablomachucamarquez definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome
AT abelerasopichot definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome
AT guillemmodolcaballero definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome
AT xaviernavarro definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome
AT franckkalume definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome
AT albertquintana definedneuronalpopulationsdrivefatalphenotypeinamousemodelofleighsyndrome
_version_ 1721458959570698240
spelling doaj-32bf3e6cbd584e239e67faa01e0f2b0e2021-05-05T17:50:09ZengeLife Sciences Publications LtdeLife2050-084X2019-08-01810.7554/eLife.47163Defined neuronal populations drive fatal phenotype in a mouse model of Leigh syndromeIrene Bolea0https://orcid.org/0000-0001-9591-980XAlejandro Gella1https://orcid.org/0000-0002-3983-1392Elisenda Sanz2https://orcid.org/0000-0002-7932-8556Patricia Prada-Dacasa3https://orcid.org/0000-0003-0689-9072Fabien Menardy4https://orcid.org/0000-0002-8712-1344Angela M Bard5Pablo Machuca-Márquez6https://orcid.org/0000-0002-7980-3839Abel Eraso-Pichot7https://orcid.org/0000-0001-6837-2714Guillem Mòdol-Caballero8Xavier Navarro9https://orcid.org/0000-0001-9849-902XFranck Kalume10https://orcid.org/0000-0002-5528-2565Albert Quintana11https://orcid.org/0000-0003-1674-7160Center for Developmental Therapeutics, Seattle Children’s Research Institute, Seattle, United States; Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, SpainInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, SpainInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, United States; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, SpainInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, SpainInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, SpainCenter for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, United StatesInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, SpainInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, SpainInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, SpainInstitut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, SpainCenter for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, United States; Department of Neurological Surgery, University of Washington, Seattle, United States; Department of Pharmacology, University of Washington, Seattle, United StatesCenter for Developmental Therapeutics, Seattle Children’s Research Institute, Seattle, United States; Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain; Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, United States; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Pediatrics, University of Washington, Seattle, United StatesMitochondrial deficits in energy production cause untreatable and fatal pathologies known as mitochondrial disease (MD). Central nervous system affectation is critical in Leigh Syndrome (LS), a common MD presentation, leading to motor and respiratory deficits, seizures and premature death. However, only specific neuronal populations are affected. Furthermore, their molecular identity and their contribution to the disease remains unknown. Here, using a mouse model of LS lacking the mitochondrial complex I subunit Ndufs4, we dissect the critical role of genetically-defined neuronal populations in LS progression. Ndufs4 inactivation in Vglut2-expressing glutamatergic neurons leads to decreased neuronal firing, brainstem inflammation, motor and respiratory deficits, and early death. In contrast, Ndufs4 deletion in GABAergic neurons causes basal ganglia inflammation without motor or respiratory involvement, but accompanied by hypothermia and severe epileptic seizures preceding death. These results provide novel insight in the cell type-specific contribution to the pathology, dissecting the underlying cellular mechanisms of MD.https://elifesciences.org/articles/47163mitochondrial diseasemouse geneticsneuropathologycell type-specific