Metallurgical and Mechanical Characterization of Low Carbon Steel—Stainless Steel Dissimilar Joints Made by Laser Autogenous Welding

This paper addresses the metallurgical and mechanical characterization of dissimilar joints made by laser autogenous welding between thin sheets of low-carbon steel (CS) and austenitic stainless steel (SS). The welding technology applied, previously optimized to produce sound dissimilar joints, is b...

Full description

Bibliographic Details
Main Authors: Elena Scutelnicu, Mihaela Iordachescu, Carmen Catalina Rusu, Danut Mihailescu, José Luis Ocaña
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/11/5/810
Description
Summary:This paper addresses the metallurgical and mechanical characterization of dissimilar joints made by laser autogenous welding between thin sheets of low-carbon steel (CS) and austenitic stainless steel (SS). The welding technology applied, previously optimized to produce sound dissimilar joints, is based on the heat source displacement from the weld gap centerline towards CS, in order to reduce the SS overheating. The research includes optical microscopy observations, energy dispersive X-ray analysis (EDX) to assess the wt% of Cr, Ni, and Fe in all regions of the dissimilar welded joint, hardness measurements, and tensile tests of transverse-welded flat specimens. In comparison with classical determination of the joint overall mechanical characteristics, the novelty of this research consists of experimental assessment of the local mechanical behavior of the fusion and heat affected zones by using a digital image correlation technique (VIC-2D). This is an efficient tool for determining the constitutive properties of the joint, useful for modelling the mechanical behavior of materials and for verifying the engineering predictions. The results show that the positive difference in yielding between the weld metal and the base materials protects the joint from being plastically deformed. As a consequence, the tensile loading of flat transverse specimens generates the strain localization and failure in CS, far away from the weld.
ISSN:2075-4701