Cylindricity Error Evaluation Based on an Improved Harmony Search Algorithm

The cylindricity error is one of the basic form errors in mechanical parts, which greatly influences the assembly accuracy and service life of relevant parts. For the minimum zone method (MZM) in international standards, there is no specific formula to calculate the cylindricity error. Therefore, th...

Full description

Bibliographic Details
Main Authors: Yang Yang, Ming Li, Chen Wang, QingYue Wei
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Scientific Programming
Online Access:http://dx.doi.org/10.1155/2018/2483781
Description
Summary:The cylindricity error is one of the basic form errors in mechanical parts, which greatly influences the assembly accuracy and service life of relevant parts. For the minimum zone method (MZM) in international standards, there is no specific formula to calculate the cylindricity error. Therefore, the evaluation methods of the cylindricity error under the MZM have been widely concerned by international scholars. To improve the evaluation accuracy and accelerate the iteration speed of the cylindricity, an improved harmony search (IHS) algorithm is proposed and applied to compute the cylindricity. On the basis of the standard harmony search algorithm, the logistic chaotic initialization is introduced into the generation of initial solution to improve the quality of solutions. During the iterative process, the global and local search capabilities are balanced by adopting the par and bw operators adaptively. After each iteration, the Cauchy mutation strategy is adopted to the best solution to further improve the calculation precision of the IHS algorithm. Finally, four test functions and three groups of cylindricity error examples were applied to validity verification of the IHS algorithm, the simulation test results show that the IHS algorithm has advantages of the computing accuracy and iteration speed compared with other traditional algorithms, and it is very effective for the application in the evaluation of the cylindricity error.
ISSN:1058-9244
1875-919X