On the planarity of the k-zero-divisor hypergraphs

Let R be a commutative ring with identity and let Z(R,k) be the set of all k-zero-divisors in R and k>2 an integer. The k-zero-divisor hypergraph of R, denoted by Hk(R), is a hypergraph with vertex set Z(R,k), and for distinct element x1,x2,…,xk in Z(R,k), the set {x1,x2,…,xk} is an edge of Hk(R)...

Full description

Bibliographic Details
Main Authors: T. Tamizh Chelvam, K. Selvakumar, V. Ramanathan
Format: Article
Language:English
Published: Taylor & Francis Group 2015-11-01
Series:AKCE International Journal of Graphs and Combinatorics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0972860015000389
id doaj-328e73e1ee0042dfabf671454a86731f
record_format Article
spelling doaj-328e73e1ee0042dfabf671454a86731f2020-11-25T03:24:41ZengTaylor & Francis GroupAKCE International Journal of Graphs and Combinatorics0972-86002015-11-0112216917610.1016/j.akcej.2015.11.011On the planarity of the k-zero-divisor hypergraphsT. Tamizh ChelvamK. SelvakumarV. RamanathanLet R be a commutative ring with identity and let Z(R,k) be the set of all k-zero-divisors in R and k>2 an integer. The k-zero-divisor hypergraph of R, denoted by Hk(R), is a hypergraph with vertex set Z(R,k), and for distinct element x1,x2,…,xk in Z(R,k), the set {x1,x2,…,xk} is an edge of Hk(R) if and only if x1x2⋯xk=0 and the product of elements of no (k−1)-subset of {x1,x2,…,xk} is zero. In this paper, we characterize all finite commutative non-local rings R for which the k-zero-divisor hypergraph is planar.http://www.sciencedirect.com/science/article/pii/S0972860015000389HypergraphZero-divisor graphPlanar hypergraphIncidence graph
collection DOAJ
language English
format Article
sources DOAJ
author T. Tamizh Chelvam
K. Selvakumar
V. Ramanathan
spellingShingle T. Tamizh Chelvam
K. Selvakumar
V. Ramanathan
On the planarity of the k-zero-divisor hypergraphs
AKCE International Journal of Graphs and Combinatorics
Hypergraph
Zero-divisor graph
Planar hypergraph
Incidence graph
author_facet T. Tamizh Chelvam
K. Selvakumar
V. Ramanathan
author_sort T. Tamizh Chelvam
title On the planarity of the k-zero-divisor hypergraphs
title_short On the planarity of the k-zero-divisor hypergraphs
title_full On the planarity of the k-zero-divisor hypergraphs
title_fullStr On the planarity of the k-zero-divisor hypergraphs
title_full_unstemmed On the planarity of the k-zero-divisor hypergraphs
title_sort on the planarity of the k-zero-divisor hypergraphs
publisher Taylor & Francis Group
series AKCE International Journal of Graphs and Combinatorics
issn 0972-8600
publishDate 2015-11-01
description Let R be a commutative ring with identity and let Z(R,k) be the set of all k-zero-divisors in R and k>2 an integer. The k-zero-divisor hypergraph of R, denoted by Hk(R), is a hypergraph with vertex set Z(R,k), and for distinct element x1,x2,…,xk in Z(R,k), the set {x1,x2,…,xk} is an edge of Hk(R) if and only if x1x2⋯xk=0 and the product of elements of no (k−1)-subset of {x1,x2,…,xk} is zero. In this paper, we characterize all finite commutative non-local rings R for which the k-zero-divisor hypergraph is planar.
topic Hypergraph
Zero-divisor graph
Planar hypergraph
Incidence graph
url http://www.sciencedirect.com/science/article/pii/S0972860015000389
work_keys_str_mv AT ttamizhchelvam ontheplanarityofthekzerodivisorhypergraphs
AT kselvakumar ontheplanarityofthekzerodivisorhypergraphs
AT vramanathan ontheplanarityofthekzerodivisorhypergraphs
_version_ 1724600594119786496