Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia
Abstract Idiopathic normal pressure hydrocephalus (iNPH) is considered an age-dependent chronic communicating hydrocephalus associated with cerebrospinal fluid (CSF) malabsorption; however, the aetiology of ventricular enlargement in iNPH has not yet been elucidated. There is accumulating evidence t...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2021-04-01
|
Series: | Fluids and Barriers of the CNS |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12987-021-00243-6 |
id |
doaj-3280c2a5de5f4465b377f9eb372e1736 |
---|---|
record_format |
Article |
spelling |
doaj-3280c2a5de5f4465b377f9eb372e17362021-04-25T11:29:28ZengBMCFluids and Barriers of the CNS2045-81182021-04-0118111110.1186/s12987-021-00243-6Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile ciliaShigeki Yamada0Masatsune Ishikawa1Kazuhiko Nozaki2Department of Neurosurgery, Shiga University of Medical ScienceDepartment of Neurosurgery and Normal Pressure Hydrocephalus Center, Rakuwakai Otowa HospitalDepartment of Neurosurgery, Shiga University of Medical ScienceAbstract Idiopathic normal pressure hydrocephalus (iNPH) is considered an age-dependent chronic communicating hydrocephalus associated with cerebrospinal fluid (CSF) malabsorption; however, the aetiology of ventricular enlargement in iNPH has not yet been elucidated. There is accumulating evidence that support the hypothesis that various alterations in CSF dynamics contribute to ventricle dilatation in iNPH. This review focuses on CSF dynamics associated with ventriculomegaly and summarises the current literature based on three potential aetiology factors: genetic, environmental and hydrodynamic. The majority of gene mutations that cause communicating hydrocephalus were associated with an abnormal structure or dysfunction of motile cilia on the ventricular ependymal cells. Aging, alcohol consumption, sleep apnoea, diabetes and hypertension are candidates for the risk of developing iNPH, although there is no prospective cohort study to investigate the risk factors for iNPH. Alcohol intake may be associated with the dysfunction of ependymal cilia and sustained high CSF sugar concentration due to uncontrolled diabetes increases the fluid viscosity which in turn increases the shear stress on the ventricular wall surface. Sleep apnoea, diabetes and hypertension are known to be associated with the impairment of CSF and interstitial fluid exchange. Oscillatory shear stress to the ventricle wall surfaces is considerably increased by reciprocating bidirectional CSF movements in iNPH. Increased oscillatory shear stress impedes normal cilia beating, leading to motile cilia shedding from the ependymal cells. At the lack of ciliary protection, the ventricular wall is directly exposed to increased oscillatory shear stress. Additionally, increased oscillatory shear stress may be involved in activating the flow-mediated dilation signalling of the ventricular wall. In conclusion, as the CSF stroke volume at the cerebral aqueduct increases, the oscillatory shear stress increases, promoting motor cilia shedding and loss of ependymal cell coverage. These are considered to be the leading causes of ventricular enlargement in iNPH.https://doi.org/10.1186/s12987-021-00243-6VentriculomegalyIdiopathic normal pressure hydrocephalusFluid dynamicsOscillatory shear stressMotile ciliaEpendymal cell |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Shigeki Yamada Masatsune Ishikawa Kazuhiko Nozaki |
spellingShingle |
Shigeki Yamada Masatsune Ishikawa Kazuhiko Nozaki Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia Fluids and Barriers of the CNS Ventriculomegaly Idiopathic normal pressure hydrocephalus Fluid dynamics Oscillatory shear stress Motile cilia Ependymal cell |
author_facet |
Shigeki Yamada Masatsune Ishikawa Kazuhiko Nozaki |
author_sort |
Shigeki Yamada |
title |
Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia |
title_short |
Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia |
title_full |
Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia |
title_fullStr |
Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia |
title_full_unstemmed |
Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia |
title_sort |
exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: a role of cerebrospinal fluid dynamics and motile cilia |
publisher |
BMC |
series |
Fluids and Barriers of the CNS |
issn |
2045-8118 |
publishDate |
2021-04-01 |
description |
Abstract Idiopathic normal pressure hydrocephalus (iNPH) is considered an age-dependent chronic communicating hydrocephalus associated with cerebrospinal fluid (CSF) malabsorption; however, the aetiology of ventricular enlargement in iNPH has not yet been elucidated. There is accumulating evidence that support the hypothesis that various alterations in CSF dynamics contribute to ventricle dilatation in iNPH. This review focuses on CSF dynamics associated with ventriculomegaly and summarises the current literature based on three potential aetiology factors: genetic, environmental and hydrodynamic. The majority of gene mutations that cause communicating hydrocephalus were associated with an abnormal structure or dysfunction of motile cilia on the ventricular ependymal cells. Aging, alcohol consumption, sleep apnoea, diabetes and hypertension are candidates for the risk of developing iNPH, although there is no prospective cohort study to investigate the risk factors for iNPH. Alcohol intake may be associated with the dysfunction of ependymal cilia and sustained high CSF sugar concentration due to uncontrolled diabetes increases the fluid viscosity which in turn increases the shear stress on the ventricular wall surface. Sleep apnoea, diabetes and hypertension are known to be associated with the impairment of CSF and interstitial fluid exchange. Oscillatory shear stress to the ventricle wall surfaces is considerably increased by reciprocating bidirectional CSF movements in iNPH. Increased oscillatory shear stress impedes normal cilia beating, leading to motile cilia shedding from the ependymal cells. At the lack of ciliary protection, the ventricular wall is directly exposed to increased oscillatory shear stress. Additionally, increased oscillatory shear stress may be involved in activating the flow-mediated dilation signalling of the ventricular wall. In conclusion, as the CSF stroke volume at the cerebral aqueduct increases, the oscillatory shear stress increases, promoting motor cilia shedding and loss of ependymal cell coverage. These are considered to be the leading causes of ventricular enlargement in iNPH. |
topic |
Ventriculomegaly Idiopathic normal pressure hydrocephalus Fluid dynamics Oscillatory shear stress Motile cilia Ependymal cell |
url |
https://doi.org/10.1186/s12987-021-00243-6 |
work_keys_str_mv |
AT shigekiyamada exploringmechanismsofventricularenlargementinidiopathicnormalpressurehydrocephalusaroleofcerebrospinalfluiddynamicsandmotilecilia AT masatsuneishikawa exploringmechanismsofventricularenlargementinidiopathicnormalpressurehydrocephalusaroleofcerebrospinalfluiddynamicsandmotilecilia AT kazuhikonozaki exploringmechanismsofventricularenlargementinidiopathicnormalpressurehydrocephalusaroleofcerebrospinalfluiddynamicsandmotilecilia |
_version_ |
1721509688608030720 |