The Rare Word Issue in Natural Language Generation: A Character-Based Solution
In this paper, we analyze the problem of generating fluent English utterances from tabular data, focusing on the development of a sequence-to-sequence neural model which shows two major features: the ability to read and generate character-wise, and the ability to switch between generating and copyin...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | Informatics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-9709/8/1/20 |
id |
doaj-327dd184f0ce439198b6223c0f8bd30d |
---|---|
record_format |
Article |
spelling |
doaj-327dd184f0ce439198b6223c0f8bd30d2021-03-24T00:01:44ZengMDPI AGInformatics2227-97092021-03-018202010.3390/informatics8010020The Rare Word Issue in Natural Language Generation: A Character-Based SolutionGiovanni Bonetta0Marco Roberti1Rossella Cancelliere2Patrick Gallinari3Department of Computer Science, University of Turin, 10149 Turin, ItalyDepartment of Computer Science, University of Turin, 10149 Turin, ItalyDepartment of Computer Science, University of Turin, 10149 Turin, ItalyLaboratoire d’Informatique de Paris 6, Sorbonne University, CNRS, 75005 Paris, FranceIn this paper, we analyze the problem of generating fluent English utterances from tabular data, focusing on the development of a sequence-to-sequence neural model which shows two major features: the ability to read and generate character-wise, and the ability to switch between generating and copying characters from the input: an essential feature when inputs contain rare words like proper names, telephone numbers, or foreign words. Working with characters instead of words is a challenge that can bring problems such as increasing the difficulty of the training phase and a bigger error probability during inference. Nevertheless, our work shows that these issues can be solved and efforts are repaid by the creation of a fully end-to-end system, whose inputs and outputs are not constrained to be part of a predefined vocabulary, like in word-based models. Furthermore, our copying technique is integrated with an innovative shift mechanism, which enhances the ability to produce outputs directly from inputs. We assess performance on the E2E dataset, the benchmark used for the E2E NLG challenge, and on a modified version of it, created to highlight the rare word copying capabilities of our model. The results demonstrate clear improvements over the baseline and promising performance compared to recent techniques in the literature.https://www.mdpi.com/2227-9709/8/1/20data-to-text generationdeep learningsequence-to-sequence modelsnatural language processing |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Giovanni Bonetta Marco Roberti Rossella Cancelliere Patrick Gallinari |
spellingShingle |
Giovanni Bonetta Marco Roberti Rossella Cancelliere Patrick Gallinari The Rare Word Issue in Natural Language Generation: A Character-Based Solution Informatics data-to-text generation deep learning sequence-to-sequence models natural language processing |
author_facet |
Giovanni Bonetta Marco Roberti Rossella Cancelliere Patrick Gallinari |
author_sort |
Giovanni Bonetta |
title |
The Rare Word Issue in Natural Language Generation: A Character-Based Solution |
title_short |
The Rare Word Issue in Natural Language Generation: A Character-Based Solution |
title_full |
The Rare Word Issue in Natural Language Generation: A Character-Based Solution |
title_fullStr |
The Rare Word Issue in Natural Language Generation: A Character-Based Solution |
title_full_unstemmed |
The Rare Word Issue in Natural Language Generation: A Character-Based Solution |
title_sort |
rare word issue in natural language generation: a character-based solution |
publisher |
MDPI AG |
series |
Informatics |
issn |
2227-9709 |
publishDate |
2021-03-01 |
description |
In this paper, we analyze the problem of generating fluent English utterances from tabular data, focusing on the development of a sequence-to-sequence neural model which shows two major features: the ability to read and generate character-wise, and the ability to switch between generating and copying characters from the input: an essential feature when inputs contain rare words like proper names, telephone numbers, or foreign words. Working with characters instead of words is a challenge that can bring problems such as increasing the difficulty of the training phase and a bigger error probability during inference. Nevertheless, our work shows that these issues can be solved and efforts are repaid by the creation of a fully end-to-end system, whose inputs and outputs are not constrained to be part of a predefined vocabulary, like in word-based models. Furthermore, our copying technique is integrated with an innovative shift mechanism, which enhances the ability to produce outputs directly from inputs. We assess performance on the E2E dataset, the benchmark used for the E2E NLG challenge, and on a modified version of it, created to highlight the rare word copying capabilities of our model. The results demonstrate clear improvements over the baseline and promising performance compared to recent techniques in the literature. |
topic |
data-to-text generation deep learning sequence-to-sequence models natural language processing |
url |
https://www.mdpi.com/2227-9709/8/1/20 |
work_keys_str_mv |
AT giovannibonetta therarewordissueinnaturallanguagegenerationacharacterbasedsolution AT marcoroberti therarewordissueinnaturallanguagegenerationacharacterbasedsolution AT rossellacancelliere therarewordissueinnaturallanguagegenerationacharacterbasedsolution AT patrickgallinari therarewordissueinnaturallanguagegenerationacharacterbasedsolution AT giovannibonetta rarewordissueinnaturallanguagegenerationacharacterbasedsolution AT marcoroberti rarewordissueinnaturallanguagegenerationacharacterbasedsolution AT rossellacancelliere rarewordissueinnaturallanguagegenerationacharacterbasedsolution AT patrickgallinari rarewordissueinnaturallanguagegenerationacharacterbasedsolution |
_version_ |
1724205464937299968 |