eduction for Michaelis-Menten-Henri kinetics in the presence of diffusion
The Michaelis-Menten-Henri (MMH) mechanism is one of the paradigm reaction mechanisms in biology and chemistry. In its simplest form, it involves a substrate that reacts (reversibly) with an enzyme, forming a complex which is transformed (irreversibly) into a product and the enzyme. Given these basi...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2007-05-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/conf-proc/16/k1/abstr.html |
id |
doaj-3256b44385f2470297133dbe02f5db7c |
---|---|
record_format |
Article |
spelling |
doaj-3256b44385f2470297133dbe02f5db7c2020-11-24T23:07:13ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912007-05-01Conference16155184eduction for Michaelis-Menten-Henri kinetics in the presence of diffusionLeonid V. KalachevHans G. KaperTasso J. KaperNikola PopovicAntonios ZagarisThe Michaelis-Menten-Henri (MMH) mechanism is one of the paradigm reaction mechanisms in biology and chemistry. In its simplest form, it involves a substrate that reacts (reversibly) with an enzyme, forming a complex which is transformed (irreversibly) into a product and the enzyme. Given these basic kinetics, a dimension reduction has traditionally been achieved in two steps, by using conservation relations to reduce the number of species and by exploiting the inherent fast-slow structure of the resulting equations. In the present article, we investigate how the dynamics change if the species are additionally allowed to diffuse. We study the two extreme regimes of large diffusivities and of small diffusivities, as well as an intermediate regime in which the time scale of diffusion is comparable to that of the fast reaction kinetics. We show that reduction is possible in each of these regimes, with the nature of the reduction being regime dependent. Our analysis relies on the classical method of matched asymptotic expansions to derive approximations for the solutions that are uniformly valid in space and time.http://ejde.math.txstate.edu/conf-proc/16/k1/abstr.htmlMichaelis-Menten-Henri mechanismdiffusiondimension reductionmatched asymptotics. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Leonid V. Kalachev Hans G. Kaper Tasso J. Kaper Nikola Popovic Antonios Zagaris |
spellingShingle |
Leonid V. Kalachev Hans G. Kaper Tasso J. Kaper Nikola Popovic Antonios Zagaris eduction for Michaelis-Menten-Henri kinetics in the presence of diffusion Electronic Journal of Differential Equations Michaelis-Menten-Henri mechanism diffusion dimension reduction matched asymptotics. |
author_facet |
Leonid V. Kalachev Hans G. Kaper Tasso J. Kaper Nikola Popovic Antonios Zagaris |
author_sort |
Leonid V. Kalachev |
title |
eduction for Michaelis-Menten-Henri kinetics in the presence of diffusion |
title_short |
eduction for Michaelis-Menten-Henri kinetics in the presence of diffusion |
title_full |
eduction for Michaelis-Menten-Henri kinetics in the presence of diffusion |
title_fullStr |
eduction for Michaelis-Menten-Henri kinetics in the presence of diffusion |
title_full_unstemmed |
eduction for Michaelis-Menten-Henri kinetics in the presence of diffusion |
title_sort |
eduction for michaelis-menten-henri kinetics in the presence of diffusion |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2007-05-01 |
description |
The Michaelis-Menten-Henri (MMH) mechanism is one of the paradigm reaction mechanisms in biology and chemistry. In its simplest form, it involves a substrate that reacts (reversibly) with an enzyme, forming a complex which is transformed (irreversibly) into a product and the enzyme. Given these basic kinetics, a dimension reduction has traditionally been achieved in two steps, by using conservation relations to reduce the number of species and by exploiting the inherent fast-slow structure of the resulting equations. In the present article, we investigate how the dynamics change if the species are additionally allowed to diffuse. We study the two extreme regimes of large diffusivities and of small diffusivities, as well as an intermediate regime in which the time scale of diffusion is comparable to that of the fast reaction kinetics. We show that reduction is possible in each of these regimes, with the nature of the reduction being regime dependent. Our analysis relies on the classical method of matched asymptotic expansions to derive approximations for the solutions that are uniformly valid in space and time. |
topic |
Michaelis-Menten-Henri mechanism diffusion dimension reduction matched asymptotics. |
url |
http://ejde.math.txstate.edu/conf-proc/16/k1/abstr.html |
work_keys_str_mv |
AT leonidvkalachev eductionformichaelismentenhenrikineticsinthepresenceofdiffusion AT hansgkaper eductionformichaelismentenhenrikineticsinthepresenceofdiffusion AT tassojkaper eductionformichaelismentenhenrikineticsinthepresenceofdiffusion AT nikolapopovic eductionformichaelismentenhenrikineticsinthepresenceofdiffusion AT antonioszagaris eductionformichaelismentenhenrikineticsinthepresenceofdiffusion |
_version_ |
1725619324765339648 |