Mechanical behavior of fiber/matrix interfaces in CFRP sheets subjected to plastic deformation

The use of Carbon Fiber Reinforced Plastic (CFRP) is increasing markedly, partially in the aviation industry, but it has been considered that CFRP sheets cannot be formed by press-forming techniques owing to the low ductility of CFRP. Since the mechanical characteristics of CFRP are dominated by the...

Full description

Bibliographic Details
Main Authors: Kamiya Ryuta, Oya Tetsuo
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:MATEC Web of Conferences
Online Access:http://dx.doi.org/10.1051/matecconf/20168016008
Description
Summary:The use of Carbon Fiber Reinforced Plastic (CFRP) is increasing markedly, partially in the aviation industry, but it has been considered that CFRP sheets cannot be formed by press-forming techniques owing to the low ductility of CFRP. Since the mechanical characteristics of CFRP are dominated by the microscale structure, it is possible to improve its formability by optimizing the material structure. Therefore, to improve the formability, the interaction between the carbon fibers and the matrix must be clarified. In this study, microscale analyses were conducted by a finite-element model with cohesive zone elements.
ISSN:2261-236X