Observer-Based Time-Variant Spacing Policy for a Platoon of Non-Holonomic Mobile Robots

This paper presents a navigation strategy for a platoon of <i>n</i> non-holonomic mobile robots with a time-varying spacing policy between each pair of successive robots at the platoon, such that a safe trailing distance is maintained at any speed, avoiding the robots getting too close t...

Full description

Bibliographic Details
Main Authors: Martín Velasco-Villa, Raúl Dalí Cruz-Morales, Alejandro Rodriguez-Angeles, Carlos A. Domínguez-Ortega
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/11/3824
id doaj-3245803185c6413a9b57e2e8a894a8a8
record_format Article
spelling doaj-3245803185c6413a9b57e2e8a894a8a82021-06-01T01:50:03ZengMDPI AGSensors1424-82202021-05-01213824382410.3390/s21113824Observer-Based Time-Variant Spacing Policy for a Platoon of Non-Holonomic Mobile RobotsMartín Velasco-Villa0Raúl Dalí Cruz-Morales1Alejandro Rodriguez-Angeles2Carlos A. Domínguez-Ortega3CINVESTAV-IPN Electrical Engineering Department, Mechatronics Section, Av. I.P.N. No. 2508, Col. San Pedro Zacatenco, Mexico City 07360, MexicoUNAM FES Cuautitlán, Engineering Department, Electrical Engineering Section, Carretera Cuautitlán-Teoloyucan Km. 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, MexicoCINVESTAV-IPN Electrical Engineering Department, Mechatronics Section, Av. I.P.N. No. 2508, Col. San Pedro Zacatenco, Mexico City 07360, MexicoCINVESTAV-IPN Electrical Engineering Department, Mechatronics Section, Av. I.P.N. No. 2508, Col. San Pedro Zacatenco, Mexico City 07360, MexicoThis paper presents a navigation strategy for a platoon of <i>n</i> non-holonomic mobile robots with a time-varying spacing policy between each pair of successive robots at the platoon, such that a safe trailing distance is maintained at any speed, avoiding the robots getting too close to each other. It is intended that all the vehicles in the formation follow the trajectory described by the leader robot, which is generated by bounded input velocities. To establish a chain formation among the vehicles, it is required that, for each pair of successive vehicles, the (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula>)-th one follows the trajectory executed by the former <i>i</i>-th one, with a delay of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> units of time. An observer is proposed to estimate the trajectory, velocities, and positions of the <i>i</i>-th vehicle, delayed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> units of time, consequently generating the desired path for the (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula>)-th vehicle, avoiding numerical approximations of the velocities, rendering robustness against noise and corrupted or missing data as well as to external disturbances. Besides the time-varying gap, a constant-time gap is used to get a secure trailing distance between each two successive robots. The presented platoon formation strategy is analyzed and proven by using Lyapunov theory, concluding asymptotic convergence for the posture tracking between the (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula>)-th robot and the virtual reference provided by the observer that corresponds to the <i>i</i>-th robot. The strategy is evaluated by numerical simulations and real-time experiments.https://www.mdpi.com/1424-8220/21/11/3824platoon formationinput-delay observernon-holonomic mobile robotstime-varying spacing policy
collection DOAJ
language English
format Article
sources DOAJ
author Martín Velasco-Villa
Raúl Dalí Cruz-Morales
Alejandro Rodriguez-Angeles
Carlos A. Domínguez-Ortega
spellingShingle Martín Velasco-Villa
Raúl Dalí Cruz-Morales
Alejandro Rodriguez-Angeles
Carlos A. Domínguez-Ortega
Observer-Based Time-Variant Spacing Policy for a Platoon of Non-Holonomic Mobile Robots
Sensors
platoon formation
input-delay observer
non-holonomic mobile robots
time-varying spacing policy
author_facet Martín Velasco-Villa
Raúl Dalí Cruz-Morales
Alejandro Rodriguez-Angeles
Carlos A. Domínguez-Ortega
author_sort Martín Velasco-Villa
title Observer-Based Time-Variant Spacing Policy for a Platoon of Non-Holonomic Mobile Robots
title_short Observer-Based Time-Variant Spacing Policy for a Platoon of Non-Holonomic Mobile Robots
title_full Observer-Based Time-Variant Spacing Policy for a Platoon of Non-Holonomic Mobile Robots
title_fullStr Observer-Based Time-Variant Spacing Policy for a Platoon of Non-Holonomic Mobile Robots
title_full_unstemmed Observer-Based Time-Variant Spacing Policy for a Platoon of Non-Holonomic Mobile Robots
title_sort observer-based time-variant spacing policy for a platoon of non-holonomic mobile robots
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2021-05-01
description This paper presents a navigation strategy for a platoon of <i>n</i> non-holonomic mobile robots with a time-varying spacing policy between each pair of successive robots at the platoon, such that a safe trailing distance is maintained at any speed, avoiding the robots getting too close to each other. It is intended that all the vehicles in the formation follow the trajectory described by the leader robot, which is generated by bounded input velocities. To establish a chain formation among the vehicles, it is required that, for each pair of successive vehicles, the (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula>)-th one follows the trajectory executed by the former <i>i</i>-th one, with a delay of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> units of time. An observer is proposed to estimate the trajectory, velocities, and positions of the <i>i</i>-th vehicle, delayed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>τ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> units of time, consequently generating the desired path for the (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula>)-th vehicle, avoiding numerical approximations of the velocities, rendering robustness against noise and corrupted or missing data as well as to external disturbances. Besides the time-varying gap, a constant-time gap is used to get a secure trailing distance between each two successive robots. The presented platoon formation strategy is analyzed and proven by using Lyapunov theory, concluding asymptotic convergence for the posture tracking between the (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula>)-th robot and the virtual reference provided by the observer that corresponds to the <i>i</i>-th robot. The strategy is evaluated by numerical simulations and real-time experiments.
topic platoon formation
input-delay observer
non-holonomic mobile robots
time-varying spacing policy
url https://www.mdpi.com/1424-8220/21/11/3824
work_keys_str_mv AT martinvelascovilla observerbasedtimevariantspacingpolicyforaplatoonofnonholonomicmobilerobots
AT rauldalicruzmorales observerbasedtimevariantspacingpolicyforaplatoonofnonholonomicmobilerobots
AT alejandrorodriguezangeles observerbasedtimevariantspacingpolicyforaplatoonofnonholonomicmobilerobots
AT carlosadominguezortega observerbasedtimevariantspacingpolicyforaplatoonofnonholonomicmobilerobots
_version_ 1721411450482720768