Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice
Abstract Background The avian influenza virus (AIV) can cross species barriers and expand its host range from birds to mammals, even humans. Avian influenza is characterized by pronounced activation of the proinflammatory cytokine cascade, which perpetuates the inflammatory response, leading to pers...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2016-10-01
|
Series: | Stem Cell Research & Therapy |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13287-016-0395-z |
id |
doaj-3242e031a4374d5ea235b333c3cb801f |
---|---|
record_format |
Article |
spelling |
doaj-3242e031a4374d5ea235b333c3cb801f2020-11-25T01:30:57ZengBMCStem Cell Research & Therapy1757-65122016-10-017111110.1186/s13287-016-0395-zMesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in miceYan Li0Jun Xu1Weiqing Shi2Cheng Chen3Yan Shao4Limei Zhu5Wei Lu6XiaoDong Han7Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and ControlInstitute of Toxicology & Functional Assessment, Jiangsu Provincial Center for Disease Prevention and ControlInstitute of Toxicology & Functional Assessment, Jiangsu Provincial Center for Disease Prevention and ControlDepartment of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and ControlDepartment of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and ControlDepartment of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and ControlDepartment of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and ControlMedical School, Nanjing UniversityAbstract Background The avian influenza virus (AIV) can cross species barriers and expand its host range from birds to mammals, even humans. Avian influenza is characterized by pronounced activation of the proinflammatory cytokine cascade, which perpetuates the inflammatory response, leading to persistent systemic inflammatory response syndrome and pulmonary infection in animals and humans. There are currently no specific treatment strategies for avian influenza. Methods We hypothesized that mesenchymal stromal cells (MSCs) would have beneficial effects in the treatment of H9N2 AIV-induced acute lung injury in mice. Six- to 8-week-old C57BL/6 mice were infected intranasally with 1 × 104 MID50 of A/HONG KONG/2108/2003 [H9N2 (HK)] H9N2 virus to induce acute lung injury. After 30 min, syngeneic MSCs were delivered through the caudal vein. Three days after infection, we measured the survival rate, lung weight, arterial blood gas, and cytokines in both bronchoalveolar lavage fluid (BALF) and serum, and assessed pathological changes to the lungs. Results MSC administration significantly palliated H9N2 AIV-induced pulmonary inflammation by reducing chemokines and proinflammatory cytokines levels, as well as reducing inflammatory cell recruit into the lungs. Thus, H9N2 AIV-induced lung injury was markedly alleviated in mice treated with MSCs. Lung histopathology and arterial blood gas analysis were improved in mice with H9N2 AIV-induced lung injury following MSC treatment. Conclusions MSC treatment significantly reduces H9N2 AIV-induced acute lung injury in mice and is associated with reduced pulmonary inflammation. These results indicate a potential role for MSC therapy in the treatment of clinical avian influenza.http://link.springer.com/article/10.1186/s13287-016-0395-zMesenchymal stromal cellH9N2 avian influenza virusesLung injuryCell therapy |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yan Li Jun Xu Weiqing Shi Cheng Chen Yan Shao Limei Zhu Wei Lu XiaoDong Han |
spellingShingle |
Yan Li Jun Xu Weiqing Shi Cheng Chen Yan Shao Limei Zhu Wei Lu XiaoDong Han Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice Stem Cell Research & Therapy Mesenchymal stromal cell H9N2 avian influenza viruses Lung injury Cell therapy |
author_facet |
Yan Li Jun Xu Weiqing Shi Cheng Chen Yan Shao Limei Zhu Wei Lu XiaoDong Han |
author_sort |
Yan Li |
title |
Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice |
title_short |
Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice |
title_full |
Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice |
title_fullStr |
Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice |
title_full_unstemmed |
Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice |
title_sort |
mesenchymal stromal cell treatment prevents h9n2 avian influenza virus-induced acute lung injury in mice |
publisher |
BMC |
series |
Stem Cell Research & Therapy |
issn |
1757-6512 |
publishDate |
2016-10-01 |
description |
Abstract Background The avian influenza virus (AIV) can cross species barriers and expand its host range from birds to mammals, even humans. Avian influenza is characterized by pronounced activation of the proinflammatory cytokine cascade, which perpetuates the inflammatory response, leading to persistent systemic inflammatory response syndrome and pulmonary infection in animals and humans. There are currently no specific treatment strategies for avian influenza. Methods We hypothesized that mesenchymal stromal cells (MSCs) would have beneficial effects in the treatment of H9N2 AIV-induced acute lung injury in mice. Six- to 8-week-old C57BL/6 mice were infected intranasally with 1 × 104 MID50 of A/HONG KONG/2108/2003 [H9N2 (HK)] H9N2 virus to induce acute lung injury. After 30 min, syngeneic MSCs were delivered through the caudal vein. Three days after infection, we measured the survival rate, lung weight, arterial blood gas, and cytokines in both bronchoalveolar lavage fluid (BALF) and serum, and assessed pathological changes to the lungs. Results MSC administration significantly palliated H9N2 AIV-induced pulmonary inflammation by reducing chemokines and proinflammatory cytokines levels, as well as reducing inflammatory cell recruit into the lungs. Thus, H9N2 AIV-induced lung injury was markedly alleviated in mice treated with MSCs. Lung histopathology and arterial blood gas analysis were improved in mice with H9N2 AIV-induced lung injury following MSC treatment. Conclusions MSC treatment significantly reduces H9N2 AIV-induced acute lung injury in mice and is associated with reduced pulmonary inflammation. These results indicate a potential role for MSC therapy in the treatment of clinical avian influenza. |
topic |
Mesenchymal stromal cell H9N2 avian influenza viruses Lung injury Cell therapy |
url |
http://link.springer.com/article/10.1186/s13287-016-0395-z |
work_keys_str_mv |
AT yanli mesenchymalstromalcelltreatmentpreventsh9n2avianinfluenzavirusinducedacutelunginjuryinmice AT junxu mesenchymalstromalcelltreatmentpreventsh9n2avianinfluenzavirusinducedacutelunginjuryinmice AT weiqingshi mesenchymalstromalcelltreatmentpreventsh9n2avianinfluenzavirusinducedacutelunginjuryinmice AT chengchen mesenchymalstromalcelltreatmentpreventsh9n2avianinfluenzavirusinducedacutelunginjuryinmice AT yanshao mesenchymalstromalcelltreatmentpreventsh9n2avianinfluenzavirusinducedacutelunginjuryinmice AT limeizhu mesenchymalstromalcelltreatmentpreventsh9n2avianinfluenzavirusinducedacutelunginjuryinmice AT weilu mesenchymalstromalcelltreatmentpreventsh9n2avianinfluenzavirusinducedacutelunginjuryinmice AT xiaodonghan mesenchymalstromalcelltreatmentpreventsh9n2avianinfluenzavirusinducedacutelunginjuryinmice |
_version_ |
1725088715943968768 |