A Class of Exponentiated Regression Model for Non Negative Censored Data with an Application to Antibody Response to Vaccine
In this paper, an asymmetric regression model for censored non-negative data based on the centred exponentiated log-skew-normal and Bernoulli distributions mixture is introduced. To connect the discrete part with the continuous distribution, the logit link function is used. The parameters of the mod...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/8/1419 |
Summary: | In this paper, an asymmetric regression model for censored non-negative data based on the centred exponentiated log-skew-normal and Bernoulli distributions mixture is introduced. To connect the discrete part with the continuous distribution, the logit link function is used. The parameters of the model are estimated by using the likelihood maximum method. The score function and the information matrix are shown in detail. Antibody data from a study of the measles vaccine are used to illustrate applicability of the proposed model, and it was found the best fit to the data with respect to an others models used in the literature. |
---|---|
ISSN: | 2073-8994 |