A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling Vessel
The paper presents algorithms for parameter identification of linear vessel models being in force for the current operating point of a ship. Advantages and disadvantages of gradient and genetic algorithms in identifying the model parameters are discussed. The study is supported by presentation of id...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2015-12-01
|
Series: | International Journal of Applied Mathematics and Computer Science |
Subjects: | |
Online Access: | https://doi.org/10.1515/amcs-2015-0063 |
id |
doaj-3226f83cb1534350b077f5b5f0b63f44 |
---|---|
record_format |
Article |
spelling |
doaj-3226f83cb1534350b077f5b5f0b63f442021-09-06T19:39:49ZengSciendoInternational Journal of Applied Mathematics and Computer Science2083-84922015-12-0125487789310.1515/amcs-2015-0063amcs-2015-0063A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling VesselBańka Stanisław0Brasel Michał1Dworak Paweł2Jaroszewski Krzysztof3Faculty of Electrical Engineering, West Pomeranian University of Technology, 26 Kwietnia 10, 71-126 Szczecin, PolandFaculty of Electrical Engineering, West Pomeranian University of Technology, 26 Kwietnia 10, 71-126 Szczecin, PolandFaculty of Electrical Engineering, West Pomeranian University of Technology, 26 Kwietnia 10, 71-126 Szczecin, PolandFaculty of Electrical Engineering, West Pomeranian University of Technology, 26 Kwietnia 10, 71-126 Szczecin, PolandThe paper presents algorithms for parameter identification of linear vessel models being in force for the current operating point of a ship. Advantages and disadvantages of gradient and genetic algorithms in identifying the model parameters are discussed. The study is supported by presentation of identification results for a nonlinear model of a drilling vessel.https://doi.org/10.1515/amcs-2015-0063mimo dynamic plantidentificationnonlinear system |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bańka Stanisław Brasel Michał Dworak Paweł Jaroszewski Krzysztof |
spellingShingle |
Bańka Stanisław Brasel Michał Dworak Paweł Jaroszewski Krzysztof A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling Vessel International Journal of Applied Mathematics and Computer Science mimo dynamic plant identification nonlinear system |
author_facet |
Bańka Stanisław Brasel Michał Dworak Paweł Jaroszewski Krzysztof |
author_sort |
Bańka Stanisław |
title |
A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling Vessel |
title_short |
A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling Vessel |
title_full |
A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling Vessel |
title_fullStr |
A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling Vessel |
title_full_unstemmed |
A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling Vessel |
title_sort |
comparative and experimental study on gradient and genetic optimization algorithms for parameter identification of linear mimo models of a drilling vessel |
publisher |
Sciendo |
series |
International Journal of Applied Mathematics and Computer Science |
issn |
2083-8492 |
publishDate |
2015-12-01 |
description |
The paper presents algorithms for parameter identification of linear vessel models being in force for the current operating point of a ship. Advantages and disadvantages of gradient and genetic algorithms in identifying the model parameters are discussed. The study is supported by presentation of identification results for a nonlinear model of a drilling vessel. |
topic |
mimo dynamic plant identification nonlinear system |
url |
https://doi.org/10.1515/amcs-2015-0063 |
work_keys_str_mv |
AT bankastanisław acomparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel AT braselmichał acomparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel AT dworakpaweł acomparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel AT jaroszewskikrzysztof acomparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel AT bankastanisław comparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel AT braselmichał comparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel AT dworakpaweł comparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel AT jaroszewskikrzysztof comparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel |
_version_ |
1717769972512456704 |