A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling Vessel

The paper presents algorithms for parameter identification of linear vessel models being in force for the current operating point of a ship. Advantages and disadvantages of gradient and genetic algorithms in identifying the model parameters are discussed. The study is supported by presentation of id...

Full description

Bibliographic Details
Main Authors: Bańka Stanisław, Brasel Michał, Dworak Paweł, Jaroszewski Krzysztof
Format: Article
Language:English
Published: Sciendo 2015-12-01
Series:International Journal of Applied Mathematics and Computer Science
Subjects:
Online Access:https://doi.org/10.1515/amcs-2015-0063
id doaj-3226f83cb1534350b077f5b5f0b63f44
record_format Article
spelling doaj-3226f83cb1534350b077f5b5f0b63f442021-09-06T19:39:49ZengSciendoInternational Journal of Applied Mathematics and Computer Science2083-84922015-12-0125487789310.1515/amcs-2015-0063amcs-2015-0063A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling VesselBańka Stanisław0Brasel Michał1Dworak Paweł2Jaroszewski Krzysztof3Faculty of Electrical Engineering, West Pomeranian University of Technology, 26 Kwietnia 10, 71-126 Szczecin, PolandFaculty of Electrical Engineering, West Pomeranian University of Technology, 26 Kwietnia 10, 71-126 Szczecin, PolandFaculty of Electrical Engineering, West Pomeranian University of Technology, 26 Kwietnia 10, 71-126 Szczecin, PolandFaculty of Electrical Engineering, West Pomeranian University of Technology, 26 Kwietnia 10, 71-126 Szczecin, PolandThe paper presents algorithms for parameter identification of linear vessel models being in force for the current operating point of a ship. Advantages and disadvantages of gradient and genetic algorithms in identifying the model parameters are discussed. The study is supported by presentation of identification results for a nonlinear model of a drilling vessel.https://doi.org/10.1515/amcs-2015-0063mimo dynamic plantidentificationnonlinear system
collection DOAJ
language English
format Article
sources DOAJ
author Bańka Stanisław
Brasel Michał
Dworak Paweł
Jaroszewski Krzysztof
spellingShingle Bańka Stanisław
Brasel Michał
Dworak Paweł
Jaroszewski Krzysztof
A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling Vessel
International Journal of Applied Mathematics and Computer Science
mimo dynamic plant
identification
nonlinear system
author_facet Bańka Stanisław
Brasel Michał
Dworak Paweł
Jaroszewski Krzysztof
author_sort Bańka Stanisław
title A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling Vessel
title_short A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling Vessel
title_full A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling Vessel
title_fullStr A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling Vessel
title_full_unstemmed A Comparative and Experimental Study on Gradient and Genetic Optimization Algorithms for Parameter Identification of Linear MIMO Models of a Drilling Vessel
title_sort comparative and experimental study on gradient and genetic optimization algorithms for parameter identification of linear mimo models of a drilling vessel
publisher Sciendo
series International Journal of Applied Mathematics and Computer Science
issn 2083-8492
publishDate 2015-12-01
description The paper presents algorithms for parameter identification of linear vessel models being in force for the current operating point of a ship. Advantages and disadvantages of gradient and genetic algorithms in identifying the model parameters are discussed. The study is supported by presentation of identification results for a nonlinear model of a drilling vessel.
topic mimo dynamic plant
identification
nonlinear system
url https://doi.org/10.1515/amcs-2015-0063
work_keys_str_mv AT bankastanisław acomparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel
AT braselmichał acomparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel
AT dworakpaweł acomparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel
AT jaroszewskikrzysztof acomparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel
AT bankastanisław comparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel
AT braselmichał comparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel
AT dworakpaweł comparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel
AT jaroszewskikrzysztof comparativeandexperimentalstudyongradientandgeneticoptimizationalgorithmsforparameteridentificationoflinearmimomodelsofadrillingvessel
_version_ 1717769972512456704