Tumor suppressor microRNA-27a in colorectal carcinogenesis and progression by targeting SGPP1 and Smad2.
The aberrant expression of microRNAs (miRNAs) is associated with colorectal carcinogenesis, but the underlying mechanisms are not clear. This study showed that the miRNA-27a (miR-27a) was significantly reduced in colorectal cancer tissues and colorectal cancer cell lines, and that the reduced miR-27...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4148394?pdf=render |
id |
doaj-322268c45f1a4286a5f5f26e35b0ef33 |
---|---|
record_format |
Article |
spelling |
doaj-322268c45f1a4286a5f5f26e35b0ef332020-11-25T01:31:39ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0198e10599110.1371/journal.pone.0105991Tumor suppressor microRNA-27a in colorectal carcinogenesis and progression by targeting SGPP1 and Smad2.Yonghua BaoZhiguo ChenYongchen GuoYansheng FengZexin LiWenliang HanJianguo WangWeixing ZhaoYunjuan JiaoKai LiQian WangJiaqi WangHuijuan ZhangLiang WangWancai YangThe aberrant expression of microRNAs (miRNAs) is associated with colorectal carcinogenesis, but the underlying mechanisms are not clear. This study showed that the miRNA-27a (miR-27a) was significantly reduced in colorectal cancer tissues and colorectal cancer cell lines, and that the reduced miR-27a was associated with distant metastasis and colorectal cancer clinical pathological stages-miR-27a was lower at stages III/IV than that at stage II. Bioinformatic and systemic biological analysis predicted several targets of miR-27a, among them SGPP1 and Smad2 were significantly affected. SGPP1 and Smad2 at mRNA and protein levels were negatively correlated with miR-27a in human colorectal cancer tissues and cancer cell lines. Increased miR-27a significantly repressed SGPP1 and Smad2 at transcriptional and translational levels. Functional studies showed that increasing miR-27a inhibited colon cancer cell proliferation, promoted apoptosis and attenuated cell migration, which were also linked to downregulation of p-STAT3 and upregulation of cleaved caspase 3. In vivo, miR-27a inhibited colon cancer cell growth in tumor-bearing mice. Taken together, this study has revealed miR-27a as a tumor suppressor and has identified SGPP1 and Smad2 as novel targets of miR-27a, linking to STAT3 for regulating cancer cell proliferation, apoptosis and migration in colorectal cancer. Therefore, miR-27a could be a useful biomarker for monitoring colorectal cancer development and progression, and also could have a therapeutic potential by targeting SGPP1, Smad2 and STAT3 for colorectal cancer therapy.http://europepmc.org/articles/PMC4148394?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yonghua Bao Zhiguo Chen Yongchen Guo Yansheng Feng Zexin Li Wenliang Han Jianguo Wang Weixing Zhao Yunjuan Jiao Kai Li Qian Wang Jiaqi Wang Huijuan Zhang Liang Wang Wancai Yang |
spellingShingle |
Yonghua Bao Zhiguo Chen Yongchen Guo Yansheng Feng Zexin Li Wenliang Han Jianguo Wang Weixing Zhao Yunjuan Jiao Kai Li Qian Wang Jiaqi Wang Huijuan Zhang Liang Wang Wancai Yang Tumor suppressor microRNA-27a in colorectal carcinogenesis and progression by targeting SGPP1 and Smad2. PLoS ONE |
author_facet |
Yonghua Bao Zhiguo Chen Yongchen Guo Yansheng Feng Zexin Li Wenliang Han Jianguo Wang Weixing Zhao Yunjuan Jiao Kai Li Qian Wang Jiaqi Wang Huijuan Zhang Liang Wang Wancai Yang |
author_sort |
Yonghua Bao |
title |
Tumor suppressor microRNA-27a in colorectal carcinogenesis and progression by targeting SGPP1 and Smad2. |
title_short |
Tumor suppressor microRNA-27a in colorectal carcinogenesis and progression by targeting SGPP1 and Smad2. |
title_full |
Tumor suppressor microRNA-27a in colorectal carcinogenesis and progression by targeting SGPP1 and Smad2. |
title_fullStr |
Tumor suppressor microRNA-27a in colorectal carcinogenesis and progression by targeting SGPP1 and Smad2. |
title_full_unstemmed |
Tumor suppressor microRNA-27a in colorectal carcinogenesis and progression by targeting SGPP1 and Smad2. |
title_sort |
tumor suppressor microrna-27a in colorectal carcinogenesis and progression by targeting sgpp1 and smad2. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2014-01-01 |
description |
The aberrant expression of microRNAs (miRNAs) is associated with colorectal carcinogenesis, but the underlying mechanisms are not clear. This study showed that the miRNA-27a (miR-27a) was significantly reduced in colorectal cancer tissues and colorectal cancer cell lines, and that the reduced miR-27a was associated with distant metastasis and colorectal cancer clinical pathological stages-miR-27a was lower at stages III/IV than that at stage II. Bioinformatic and systemic biological analysis predicted several targets of miR-27a, among them SGPP1 and Smad2 were significantly affected. SGPP1 and Smad2 at mRNA and protein levels were negatively correlated with miR-27a in human colorectal cancer tissues and cancer cell lines. Increased miR-27a significantly repressed SGPP1 and Smad2 at transcriptional and translational levels. Functional studies showed that increasing miR-27a inhibited colon cancer cell proliferation, promoted apoptosis and attenuated cell migration, which were also linked to downregulation of p-STAT3 and upregulation of cleaved caspase 3. In vivo, miR-27a inhibited colon cancer cell growth in tumor-bearing mice. Taken together, this study has revealed miR-27a as a tumor suppressor and has identified SGPP1 and Smad2 as novel targets of miR-27a, linking to STAT3 for regulating cancer cell proliferation, apoptosis and migration in colorectal cancer. Therefore, miR-27a could be a useful biomarker for monitoring colorectal cancer development and progression, and also could have a therapeutic potential by targeting SGPP1, Smad2 and STAT3 for colorectal cancer therapy. |
url |
http://europepmc.org/articles/PMC4148394?pdf=render |
work_keys_str_mv |
AT yonghuabao tumorsuppressormicrorna27aincolorectalcarcinogenesisandprogressionbytargetingsgpp1andsmad2 AT zhiguochen tumorsuppressormicrorna27aincolorectalcarcinogenesisandprogressionbytargetingsgpp1andsmad2 AT yongchenguo tumorsuppressormicrorna27aincolorectalcarcinogenesisandprogressionbytargetingsgpp1andsmad2 AT yanshengfeng tumorsuppressormicrorna27aincolorectalcarcinogenesisandprogressionbytargetingsgpp1andsmad2 AT zexinli tumorsuppressormicrorna27aincolorectalcarcinogenesisandprogressionbytargetingsgpp1andsmad2 AT wenlianghan tumorsuppressormicrorna27aincolorectalcarcinogenesisandprogressionbytargetingsgpp1andsmad2 AT jianguowang tumorsuppressormicrorna27aincolorectalcarcinogenesisandprogressionbytargetingsgpp1andsmad2 AT weixingzhao tumorsuppressormicrorna27aincolorectalcarcinogenesisandprogressionbytargetingsgpp1andsmad2 AT yunjuanjiao tumorsuppressormicrorna27aincolorectalcarcinogenesisandprogressionbytargetingsgpp1andsmad2 AT kaili tumorsuppressormicrorna27aincolorectalcarcinogenesisandprogressionbytargetingsgpp1andsmad2 AT qianwang tumorsuppressormicrorna27aincolorectalcarcinogenesisandprogressionbytargetingsgpp1andsmad2 AT jiaqiwang tumorsuppressormicrorna27aincolorectalcarcinogenesisandprogressionbytargetingsgpp1andsmad2 AT huijuanzhang tumorsuppressormicrorna27aincolorectalcarcinogenesisandprogressionbytargetingsgpp1andsmad2 AT liangwang tumorsuppressormicrorna27aincolorectalcarcinogenesisandprogressionbytargetingsgpp1andsmad2 AT wancaiyang tumorsuppressormicrorna27aincolorectalcarcinogenesisandprogressionbytargetingsgpp1andsmad2 |
_version_ |
1725085376628916224 |