MSF-Net: Multi-Scale Feature Learning Network for Classification of Surface Defects of Multifarious Sizes
In the field of surface defect detection, the scale difference of product surface defects is often huge. The existing defect detection methods based on Convolutional Neural Networks (CNNs) are more inclined to express macro and abstract features, and the ability to express local and small defects is...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/21/15/5125 |
id |
doaj-32149a10e02e45e7b6784400e05d3bfd |
---|---|
record_format |
Article |
spelling |
doaj-32149a10e02e45e7b6784400e05d3bfd2021-08-06T15:31:31ZengMDPI AGSensors1424-82202021-07-01215125512510.3390/s21155125MSF-Net: Multi-Scale Feature Learning Network for Classification of Surface Defects of Multifarious SizesPengcheng Xu0Zhongyuan Guo1Lei Liang2Xiaohang Xu3College of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, ChinaSchool of Electronic Information, Wuhan University, Wuhan 430072, ChinaCollege of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, ChinaSchool of Electronic Information, Wuhan University, Wuhan 430072, ChinaIn the field of surface defect detection, the scale difference of product surface defects is often huge. The existing defect detection methods based on Convolutional Neural Networks (CNNs) are more inclined to express macro and abstract features, and the ability to express local and small defects is insufficient, resulting in an imbalance of feature expression capabilities. In this paper, a Multi-Scale Feature Learning Network (MSF-Net) based on Dual Module Feature (DMF) extractor is proposed. DMF extractor is mainly composed of optimized Concatenated Rectified Linear Units (CReLUs) and optimized Inception feature extraction modules, which increases the diversity of feature receptive fields while reducing the amount of calculation; the feature maps of the middle layer with different sizes of receptive fields are merged to increase the richness of the receptive fields of the last layer of feature maps; the residual shortcut connections, batch normalization layer and average pooling layer are used to replace the fully connected layer to improve training efficiency, and make the multi-scale feature learning ability more balanced at the same time. Two representative multi-scale defect data sets are used for experiments, and the experimental results verify the advancement and effectiveness of the proposed MSF-Net in the detection of surface defects with multi-scale features.https://www.mdpi.com/1424-8220/21/15/5125surface defect classificationdeep learningconvolutional neural networkmulti-scale featuresmulti-size defects |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Pengcheng Xu Zhongyuan Guo Lei Liang Xiaohang Xu |
spellingShingle |
Pengcheng Xu Zhongyuan Guo Lei Liang Xiaohang Xu MSF-Net: Multi-Scale Feature Learning Network for Classification of Surface Defects of Multifarious Sizes Sensors surface defect classification deep learning convolutional neural network multi-scale features multi-size defects |
author_facet |
Pengcheng Xu Zhongyuan Guo Lei Liang Xiaohang Xu |
author_sort |
Pengcheng Xu |
title |
MSF-Net: Multi-Scale Feature Learning Network for Classification of Surface Defects of Multifarious Sizes |
title_short |
MSF-Net: Multi-Scale Feature Learning Network for Classification of Surface Defects of Multifarious Sizes |
title_full |
MSF-Net: Multi-Scale Feature Learning Network for Classification of Surface Defects of Multifarious Sizes |
title_fullStr |
MSF-Net: Multi-Scale Feature Learning Network for Classification of Surface Defects of Multifarious Sizes |
title_full_unstemmed |
MSF-Net: Multi-Scale Feature Learning Network for Classification of Surface Defects of Multifarious Sizes |
title_sort |
msf-net: multi-scale feature learning network for classification of surface defects of multifarious sizes |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2021-07-01 |
description |
In the field of surface defect detection, the scale difference of product surface defects is often huge. The existing defect detection methods based on Convolutional Neural Networks (CNNs) are more inclined to express macro and abstract features, and the ability to express local and small defects is insufficient, resulting in an imbalance of feature expression capabilities. In this paper, a Multi-Scale Feature Learning Network (MSF-Net) based on Dual Module Feature (DMF) extractor is proposed. DMF extractor is mainly composed of optimized Concatenated Rectified Linear Units (CReLUs) and optimized Inception feature extraction modules, which increases the diversity of feature receptive fields while reducing the amount of calculation; the feature maps of the middle layer with different sizes of receptive fields are merged to increase the richness of the receptive fields of the last layer of feature maps; the residual shortcut connections, batch normalization layer and average pooling layer are used to replace the fully connected layer to improve training efficiency, and make the multi-scale feature learning ability more balanced at the same time. Two representative multi-scale defect data sets are used for experiments, and the experimental results verify the advancement and effectiveness of the proposed MSF-Net in the detection of surface defects with multi-scale features. |
topic |
surface defect classification deep learning convolutional neural network multi-scale features multi-size defects |
url |
https://www.mdpi.com/1424-8220/21/15/5125 |
work_keys_str_mv |
AT pengchengxu msfnetmultiscalefeaturelearningnetworkforclassificationofsurfacedefectsofmultifarioussizes AT zhongyuanguo msfnetmultiscalefeaturelearningnetworkforclassificationofsurfacedefectsofmultifarioussizes AT leiliang msfnetmultiscalefeaturelearningnetworkforclassificationofsurfacedefectsofmultifarioussizes AT xiaohangxu msfnetmultiscalefeaturelearningnetworkforclassificationofsurfacedefectsofmultifarioussizes |
_version_ |
1721217567196971008 |