Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential Equation

In this paper, we obtain necessary and sufficient conditions for a Kamenev-type oscillation criterion of a fourth order differential equation of the form <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mfenced separators="" ope...

Full description

Bibliographic Details
Main Author: Omar Bazighifan
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/4/1/7
id doaj-320ca89f7b3c409ba17ebc4b4e95ce89
record_format Article
spelling doaj-320ca89f7b3c409ba17ebc4b4e95ce892021-04-02T12:26:14ZengMDPI AGFractal and Fractional2504-31102020-03-0141710.3390/fractalfract4010007fractalfract4010007Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential EquationOmar Bazighifan0Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, YemenIn this paper, we obtain necessary and sufficient conditions for a Kamenev-type oscillation criterion of a fourth order differential equation of the form <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mfenced separators="" open="(" close=")"> <msub> <mi>r</mi> <mn>3</mn> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <msup> <mfenced separators="" open="(" close=")"> <msub> <mi>r</mi> <mn>2</mn> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <msup> <mfenced separators="" open="(" close=")"> <msub> <mi>r</mi> <mn>1</mn> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <msup> <mi>y</mi> <mo>&#8242;</mo> </msup> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mfenced> <mo>&#8242;</mo> </msup> </mfenced> <mo>&#8242;</mo> </msup> </mfenced> <mo>&#8242;</mo> </msup> <mo>+</mo> <mi>q</mi> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <mi>f</mi> <mfenced separators="" open="(" close=")"> <mi>y</mi> <mfenced separators="" open="(" close=")"> <mi>&#963;</mi> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mfenced> </mfenced> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8805;</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>.</mo> <mspace width="4pt"></mspace> </mrow> </semantics> </math> </inline-formula>The results presented here complement some of the known results reported in the literature. Moreover, the importance of the obtained conditions is illustrated via some examples.https://www.mdpi.com/2504-3110/4/1/7oscillatory solutionsfourth-orderdelay differential equations
collection DOAJ
language English
format Article
sources DOAJ
author Omar Bazighifan
spellingShingle Omar Bazighifan
Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential Equation
Fractal and Fractional
oscillatory solutions
fourth-order
delay differential equations
author_facet Omar Bazighifan
author_sort Omar Bazighifan
title Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential Equation
title_short Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential Equation
title_full Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential Equation
title_fullStr Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential Equation
title_full_unstemmed Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential Equation
title_sort kamenev-type asymptotic criterion of fourth-order delay differential equation
publisher MDPI AG
series Fractal and Fractional
issn 2504-3110
publishDate 2020-03-01
description In this paper, we obtain necessary and sufficient conditions for a Kamenev-type oscillation criterion of a fourth order differential equation of the form <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mfenced separators="" open="(" close=")"> <msub> <mi>r</mi> <mn>3</mn> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <msup> <mfenced separators="" open="(" close=")"> <msub> <mi>r</mi> <mn>2</mn> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <msup> <mfenced separators="" open="(" close=")"> <msub> <mi>r</mi> <mn>1</mn> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <msup> <mi>y</mi> <mo>&#8242;</mo> </msup> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mfenced> <mo>&#8242;</mo> </msup> </mfenced> <mo>&#8242;</mo> </msup> </mfenced> <mo>&#8242;</mo> </msup> <mo>+</mo> <mi>q</mi> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <mi>f</mi> <mfenced separators="" open="(" close=")"> <mi>y</mi> <mfenced separators="" open="(" close=")"> <mi>&#963;</mi> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mfenced> </mfenced> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>&#8805;</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>.</mo> <mspace width="4pt"></mspace> </mrow> </semantics> </math> </inline-formula>The results presented here complement some of the known results reported in the literature. Moreover, the importance of the obtained conditions is illustrated via some examples.
topic oscillatory solutions
fourth-order
delay differential equations
url https://www.mdpi.com/2504-3110/4/1/7
work_keys_str_mv AT omarbazighifan kamenevtypeasymptoticcriterionoffourthorderdelaydifferentialequation
_version_ 1721568963848044544