Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential Equation
In this paper, we obtain necessary and sufficient conditions for a Kamenev-type oscillation criterion of a fourth order differential equation of the form <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mfenced separators="" ope...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-03-01
|
Series: | Fractal and Fractional |
Subjects: | |
Online Access: | https://www.mdpi.com/2504-3110/4/1/7 |
id |
doaj-320ca89f7b3c409ba17ebc4b4e95ce89 |
---|---|
record_format |
Article |
spelling |
doaj-320ca89f7b3c409ba17ebc4b4e95ce892021-04-02T12:26:14ZengMDPI AGFractal and Fractional2504-31102020-03-0141710.3390/fractalfract4010007fractalfract4010007Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential EquationOmar Bazighifan0Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, YemenIn this paper, we obtain necessary and sufficient conditions for a Kamenev-type oscillation criterion of a fourth order differential equation of the form <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mfenced separators="" open="(" close=")"> <msub> <mi>r</mi> <mn>3</mn> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <msup> <mfenced separators="" open="(" close=")"> <msub> <mi>r</mi> <mn>2</mn> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <msup> <mfenced separators="" open="(" close=")"> <msub> <mi>r</mi> <mn>1</mn> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <msup> <mi>y</mi> <mo>′</mo> </msup> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mfenced> <mo>′</mo> </msup> </mfenced> <mo>′</mo> </msup> </mfenced> <mo>′</mo> </msup> <mo>+</mo> <mi>q</mi> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <mi>f</mi> <mfenced separators="" open="(" close=")"> <mi>y</mi> <mfenced separators="" open="(" close=")"> <mi>σ</mi> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mfenced> </mfenced> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>≥</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>.</mo> <mspace width="4pt"></mspace> </mrow> </semantics> </math> </inline-formula>The results presented here complement some of the known results reported in the literature. Moreover, the importance of the obtained conditions is illustrated via some examples.https://www.mdpi.com/2504-3110/4/1/7oscillatory solutionsfourth-orderdelay differential equations |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Omar Bazighifan |
spellingShingle |
Omar Bazighifan Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential Equation Fractal and Fractional oscillatory solutions fourth-order delay differential equations |
author_facet |
Omar Bazighifan |
author_sort |
Omar Bazighifan |
title |
Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential Equation |
title_short |
Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential Equation |
title_full |
Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential Equation |
title_fullStr |
Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential Equation |
title_full_unstemmed |
Kamenev-Type Asymptotic Criterion of Fourth-Order Delay Differential Equation |
title_sort |
kamenev-type asymptotic criterion of fourth-order delay differential equation |
publisher |
MDPI AG |
series |
Fractal and Fractional |
issn |
2504-3110 |
publishDate |
2020-03-01 |
description |
In this paper, we obtain necessary and sufficient conditions for a Kamenev-type oscillation criterion of a fourth order differential equation of the form <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mfenced separators="" open="(" close=")"> <msub> <mi>r</mi> <mn>3</mn> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <msup> <mfenced separators="" open="(" close=")"> <msub> <mi>r</mi> <mn>2</mn> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <msup> <mfenced separators="" open="(" close=")"> <msub> <mi>r</mi> <mn>1</mn> </msub> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <msup> <mi>y</mi> <mo>′</mo> </msup> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mfenced> <mo>′</mo> </msup> </mfenced> <mo>′</mo> </msup> </mfenced> <mo>′</mo> </msup> <mo>+</mo> <mi>q</mi> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> <mi>f</mi> <mfenced separators="" open="(" close=")"> <mi>y</mi> <mfenced separators="" open="(" close=")"> <mi>σ</mi> <mfenced open="(" close=")"> <mi>t</mi> </mfenced> </mfenced> </mfenced> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>≥</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>.</mo> <mspace width="4pt"></mspace> </mrow> </semantics> </math> </inline-formula>The results presented here complement some of the known results reported in the literature. Moreover, the importance of the obtained conditions is illustrated via some examples. |
topic |
oscillatory solutions fourth-order delay differential equations |
url |
https://www.mdpi.com/2504-3110/4/1/7 |
work_keys_str_mv |
AT omarbazighifan kamenevtypeasymptoticcriterionoffourthorderdelaydifferentialequation |
_version_ |
1721568963848044544 |