Simulation on the Performance of Dye Solar Cell Incorporated with TiO2 Passivation Layer

Dye Solar Cell (DSC) has started to gain interest in the recent years for practical application because of its ecofriendly, low cost, and easy fabrication. However, its efficiency is still not as competitive as the conventional silicon based solar cell. One of the research efforts to improve the eff...

Full description

Bibliographic Details
Main Authors: Unan Yusmaniar Oktiawati, Norani Muti Mohamed, Zainal Arif Burhanudin
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2016/8507625
Description
Summary:Dye Solar Cell (DSC) has started to gain interest in the recent years for practical application because of its ecofriendly, low cost, and easy fabrication. However, its efficiency is still not as competitive as the conventional silicon based solar cell. One of the research efforts to improve the efficiency of DSC is to use the passivation layer in between the photoelectrode material and the conductive oxide substrate. Thus, the objective of this simulation study is to investigate the effect of passivation layer on the performance of DSC. Properties from literatures which are based on physical work were captured as the input for the simulation using process, ATHENA, and device, ATLAS, simulator. Results have shown that the addition of two-20 nm TiO2 passivation layers on DSC can enhance the efficiency by 11% as the result of less recombination, higher electron mobility, and longer electron lifetime.
ISSN:1110-662X
1687-529X