Life History of the Emerald Jewel Wasp Ampulex compressa

The Emerald Jewel Wasp Ampulex compressa (Fabricius) is an endoparasitoid of the American cockroach Periplaneta americana (Linnaeus). Its host subjugation strategy is unusual in that envenomation is directed into the host central nervous system, eliciting a long-term behavior modif...

Full description

Bibliographic Details
Main Authors: Ryan Arvidson, Victor Landa, Sarah Frankenberg, Michael E. Adams
Format: Article
Language:English
Published: Pensoft Publishers 2018-04-01
Series:Journal of Hymenoptera Research
Online Access:https://jhr.pensoft.net/articles.php?id=21762
Description
Summary:The Emerald Jewel Wasp Ampulex compressa (Fabricius) is an endoparasitoid of the American cockroach Periplaneta americana (Linnaeus). Its host subjugation strategy is unusual in that envenomation is directed into the host central nervous system, eliciting a long-term behavior modification termed hypokinesia, turning stung cockroaches into a lethargic and compliant, but not paralyzed, living food supply for wasp offspring. A. compressa manipulates hypokinesic cockroaches into a burrow, where it oviposits a single egg onto a mesothoracic leg, hatching three days later. Herein we describe the life history and developmental timing of A. compressa. Using head capsule measurements and observations of mandibular morphology, we found that the larvae develop through three instars, the first two ectoparasitoid, and the third exclusively endoparasitoid. The first two instars have mandibles sufficient for piercing and cutting the cuticle respectively, while the third instar has a larger and blunter mandibular structure. During ecdysis to the third instar, the larva enters the body cavity of the cockroach, consuming internal tissues selectively, including fat body and skeletal muscle, but sparing the gut and Malpighian tubules. The developmental timing to pupation is similar between males and females, but cocoon volume and mass, and pupation duration are sexually dimorphic. Further, we show that the difference in cocoon mass and volume can be used to predict sex before eclosion, which is valuable for studies in venom pharmacology, as only females produce venom.
ISSN:1070-9428
1314-2607