Superconformal boundaries in 4 − ϵ dimensions

Abstract Boundaries in three-dimensional N $$ \mathcal{N} $$ = 2 superconformal theories may preserve one half of the original bulk supersymmetry. There are two possibilities which are characterized by the chirality of the leftover supercharges. Depending on the choice, the remaining 2d boundary alg...

Full description

Bibliographic Details
Main Authors: Aleix Gimenez-Grau, Pedro Liendo, Philine van Vliet
Format: Article
Language:English
Published: SpringerOpen 2021-04-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP04(2021)167
Description
Summary:Abstract Boundaries in three-dimensional N $$ \mathcal{N} $$ = 2 superconformal theories may preserve one half of the original bulk supersymmetry. There are two possibilities which are characterized by the chirality of the leftover supercharges. Depending on the choice, the remaining 2d boundary algebra exhibits N $$ \mathcal{N} $$ = (0, 2) or N $$ \mathcal{N} $$ = (1) supersymmetry. In this work we focus on correlation functions of chiral fields for both types of supersymmetric boundaries. We study a host of correlators using superspace techniques and calculate superconformal blocks for two- and three-point functions. For N $$ \mathcal{N} $$ = (1) supersymmetry, some of our results can be analytically continued in the spacetime dimension while keeping the codimension fixed. This opens the door for a bootstrap analysis of the ϵ-expansion in supersymmetric BCFTs. Armed with our analytically-continued superblocks, we prove that in the free theory limit two-point functions of chiral (and antichiral) fields are unique. The first order correction, which already describes interactions, is universal up to two free parameters. As a check of our analysis, we study the Wess-Zumino model with a super-symmetric boundary using Feynman diagrams, and find perfect agreement between the perturbative and bootstrap results.
ISSN:1029-8479