Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes
<p>This work focuses on the in-depth reconstruction of the full set of parameters of interest in single-block rockfall trajectories. A comprehensive understanding of rockfall trajectories holds the promise to enhance the application of numerical models for engineering hazard analysis. Such kno...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-02-01
|
Series: | Earth Surface Dynamics |
Online Access: | https://www.earth-surf-dynam.net/7/199/2019/esurf-7-199-2019.pdf |
id |
doaj-31d77350a8124783898f1f7d9a4a6274 |
---|---|
record_format |
Article |
spelling |
doaj-31d77350a8124783898f1f7d9a4a62742020-11-24T23:59:01ZengCopernicus PublicationsEarth Surface Dynamics2196-63112196-632X2019-02-01719921010.5194/esurf-7-199-2019Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopesA. Caviezel0S. E. Demmel1A. Ringenbach2Y. Bühler3G. Lu4M. Christen5C. E. Dinneen6L. A. Eberhard7D. von Rickenbach8P. Bartelt9WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland<p>This work focuses on the in-depth reconstruction of the full set of parameters of interest in single-block rockfall trajectories. A comprehensive understanding of rockfall trajectories holds the promise to enhance the application of numerical models for engineering hazard analysis. Such knowledge is equally important to investigate wider cascade problems in steep terrain. Here, we present a full four-dimensional trajectory reconstruction of the “Chant Sura” rockfall experiment performed with EOTA<span class="inline-formula"><sub>221</sub></span> norm rocks. The data analysis allows a complete kinematic description of a rock's trajectory in real terrain and underscores the physical complexity of rock–ground interactions. In situ accelerometer and gyroscope data are combined with videogrammetric and unmanned aerial-systems mapping techniques to understand the role of rock rotations, ground penetration and translational scarring in rockfall motion. The exhaustive trajectory reconstruction provides information over the complete flight path such as translational velocity vectors, angular velocities, impact duration and forces, ballistic jump heights, and lengths. The experimental data provide insight into the basic physical processes detailing how rotating rocks of general shape penetrate, rebound and scar ground terrain. In future, the data will serve as a calibration basis to enhance numerical rockfall modelling.</p>https://www.earth-surf-dynam.net/7/199/2019/esurf-7-199-2019.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. Caviezel S. E. Demmel A. Ringenbach Y. Bühler G. Lu M. Christen C. E. Dinneen L. A. Eberhard D. von Rickenbach P. Bartelt |
spellingShingle |
A. Caviezel S. E. Demmel A. Ringenbach Y. Bühler G. Lu M. Christen C. E. Dinneen L. A. Eberhard D. von Rickenbach P. Bartelt Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes Earth Surface Dynamics |
author_facet |
A. Caviezel S. E. Demmel A. Ringenbach Y. Bühler G. Lu M. Christen C. E. Dinneen L. A. Eberhard D. von Rickenbach P. Bartelt |
author_sort |
A. Caviezel |
title |
Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes |
title_short |
Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes |
title_full |
Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes |
title_fullStr |
Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes |
title_full_unstemmed |
Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes |
title_sort |
reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes |
publisher |
Copernicus Publications |
series |
Earth Surface Dynamics |
issn |
2196-6311 2196-632X |
publishDate |
2019-02-01 |
description |
<p>This work focuses on the in-depth reconstruction of the full set of
parameters of interest in single-block rockfall trajectories. A comprehensive
understanding of rockfall trajectories holds the promise to enhance the
application of numerical models for engineering hazard analysis. Such
knowledge is equally important to investigate wider cascade problems in steep
terrain. Here, we present a full four-dimensional trajectory reconstruction
of the “Chant Sura” rockfall experiment performed with EOTA<span class="inline-formula"><sub>221</sub></span> norm rocks. The data
analysis allows a complete kinematic description of a rock's trajectory in
real terrain and underscores the physical complexity of rock–ground
interactions. In situ accelerometer and gyroscope data are combined with
videogrammetric and unmanned aerial-systems mapping techniques to understand
the role of rock rotations, ground penetration and translational scarring in
rockfall motion. The exhaustive trajectory reconstruction provides
information over the complete flight path such as translational velocity
vectors, angular velocities, impact duration and forces, ballistic jump
heights, and lengths. The experimental data provide insight into the basic
physical processes detailing how rotating rocks of general shape penetrate,
rebound and scar ground terrain. In future, the data will serve as a calibration
basis to enhance numerical rockfall modelling.</p> |
url |
https://www.earth-surf-dynam.net/7/199/2019/esurf-7-199-2019.pdf |
work_keys_str_mv |
AT acaviezel reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes AT sedemmel reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes AT aringenbach reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes AT ybuhler reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes AT glu reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes AT mchristen reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes AT cedinneen reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes AT laeberhard reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes AT dvonrickenbach reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes AT pbartelt reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes |
_version_ |
1725448565340241920 |