Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes

<p>This work focuses on the in-depth reconstruction of the full set of parameters of interest in single-block rockfall trajectories. A comprehensive understanding of rockfall trajectories holds the promise to enhance the application of numerical models for engineering hazard analysis. Such kno...

Full description

Bibliographic Details
Main Authors: A. Caviezel, S. E. Demmel, A. Ringenbach, Y. Bühler, G. Lu, M. Christen, C. E. Dinneen, L. A. Eberhard, D. von Rickenbach, P. Bartelt
Format: Article
Language:English
Published: Copernicus Publications 2019-02-01
Series:Earth Surface Dynamics
Online Access:https://www.earth-surf-dynam.net/7/199/2019/esurf-7-199-2019.pdf
id doaj-31d77350a8124783898f1f7d9a4a6274
record_format Article
spelling doaj-31d77350a8124783898f1f7d9a4a62742020-11-24T23:59:01ZengCopernicus PublicationsEarth Surface Dynamics2196-63112196-632X2019-02-01719921010.5194/esurf-7-199-2019Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopesA. Caviezel0S. E. Demmel1A. Ringenbach2Y. Bühler3G. Lu4M. Christen5C. E. Dinneen6L. A. Eberhard7D. von Rickenbach8P. Bartelt9WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandWSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland<p>This work focuses on the in-depth reconstruction of the full set of parameters of interest in single-block rockfall trajectories. A comprehensive understanding of rockfall trajectories holds the promise to enhance the application of numerical models for engineering hazard analysis. Such knowledge is equally important to investigate wider cascade problems in steep terrain. Here, we present a full four-dimensional trajectory reconstruction of the “Chant Sura” rockfall experiment performed with EOTA<span class="inline-formula"><sub>221</sub></span> norm rocks. The data analysis allows a complete kinematic description of a rock's trajectory in real terrain and underscores the physical complexity of rock–ground interactions. In situ accelerometer and gyroscope data are combined with videogrammetric and unmanned aerial-systems mapping techniques to understand the role of rock rotations, ground penetration and translational scarring in rockfall motion. The exhaustive trajectory reconstruction provides information over the complete flight path such as translational velocity vectors, angular velocities, impact duration and forces, ballistic jump heights, and lengths. The experimental data provide insight into the basic physical processes detailing how rotating rocks of general shape penetrate, rebound and scar ground terrain. In future, the data will serve as a calibration basis to enhance numerical rockfall modelling.</p>https://www.earth-surf-dynam.net/7/199/2019/esurf-7-199-2019.pdf
collection DOAJ
language English
format Article
sources DOAJ
author A. Caviezel
S. E. Demmel
A. Ringenbach
Y. Bühler
G. Lu
M. Christen
C. E. Dinneen
L. A. Eberhard
D. von Rickenbach
P. Bartelt
spellingShingle A. Caviezel
S. E. Demmel
A. Ringenbach
Y. Bühler
G. Lu
M. Christen
C. E. Dinneen
L. A. Eberhard
D. von Rickenbach
P. Bartelt
Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes
Earth Surface Dynamics
author_facet A. Caviezel
S. E. Demmel
A. Ringenbach
Y. Bühler
G. Lu
M. Christen
C. E. Dinneen
L. A. Eberhard
D. von Rickenbach
P. Bartelt
author_sort A. Caviezel
title Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes
title_short Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes
title_full Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes
title_fullStr Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes
title_full_unstemmed Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes
title_sort reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes
publisher Copernicus Publications
series Earth Surface Dynamics
issn 2196-6311
2196-632X
publishDate 2019-02-01
description <p>This work focuses on the in-depth reconstruction of the full set of parameters of interest in single-block rockfall trajectories. A comprehensive understanding of rockfall trajectories holds the promise to enhance the application of numerical models for engineering hazard analysis. Such knowledge is equally important to investigate wider cascade problems in steep terrain. Here, we present a full four-dimensional trajectory reconstruction of the “Chant Sura” rockfall experiment performed with EOTA<span class="inline-formula"><sub>221</sub></span> norm rocks. The data analysis allows a complete kinematic description of a rock's trajectory in real terrain and underscores the physical complexity of rock–ground interactions. In situ accelerometer and gyroscope data are combined with videogrammetric and unmanned aerial-systems mapping techniques to understand the role of rock rotations, ground penetration and translational scarring in rockfall motion. The exhaustive trajectory reconstruction provides information over the complete flight path such as translational velocity vectors, angular velocities, impact duration and forces, ballistic jump heights, and lengths. The experimental data provide insight into the basic physical processes detailing how rotating rocks of general shape penetrate, rebound and scar ground terrain. In future, the data will serve as a calibration basis to enhance numerical rockfall modelling.</p>
url https://www.earth-surf-dynam.net/7/199/2019/esurf-7-199-2019.pdf
work_keys_str_mv AT acaviezel reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes
AT sedemmel reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes
AT aringenbach reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes
AT ybuhler reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes
AT glu reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes
AT mchristen reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes
AT cedinneen reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes
AT laeberhard reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes
AT dvonrickenbach reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes
AT pbartelt reconstructionoffourdimensionalrockfalltrajectoriesusingremotesensingandrockbasedaccelerometersandgyroscopes
_version_ 1725448565340241920