An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression

Multivariate noises in the learning process are most of the time supposed to follow a standard multivariate normal distribution. This hypothesis does not often hold in many real-world situations. In this paper, we consider an approach based on multivariate skew-normal distribution. It allows for a m...

Full description

Bibliographic Details
Main Authors: Castro Gbêmêmali Hounmenou, Kossi Essona Gneyou, Romain Glélé Kakaï
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Journal of Probability and Statistics
Online Access:http://dx.doi.org/10.1155/2020/9187503
id doaj-31d43ed94f1b4ef5b3b99547bac4a5e9
record_format Article
spelling doaj-31d43ed94f1b4ef5b3b99547bac4a5e92020-11-25T03:36:41ZengHindawi LimitedJournal of Probability and Statistics1687-952X1687-95382020-01-01202010.1155/2020/91875039187503An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear RegressionCastro Gbêmêmali Hounmenou0Kossi Essona Gneyou1Romain Glélé Kakaï2Laboratoire de Biomathématiques et d’Estimations Forestières, Université d’Abomey-Calavi, Cotonou, BeninLaboratoire de Modélisations Mathématiques et Applications, Université de Lomé, Lome, TogoLaboratoire de Biomathématiques et d’Estimations Forestières, Université d’Abomey-Calavi, Cotonou, BeninMultivariate noises in the learning process are most of the time supposed to follow a standard multivariate normal distribution. This hypothesis does not often hold in many real-world situations. In this paper, we consider an approach based on multivariate skew-normal distribution. It allows for a multiple continuous variation from normality to nonnormality. We give an extension of the generalized least squares error function in a context of multivariate nonlinear regression to learn imprecise data. The simulation study and application case on real datasets conducted and based on multilayer perceptron neural networks (MLP) with bivariate continuous response and asymmetric revealed a significant gain in precision using the new quadratic error function for these types of data rather than using a classical generalized least squares error function having any covariance matrix.http://dx.doi.org/10.1155/2020/9187503
collection DOAJ
language English
format Article
sources DOAJ
author Castro Gbêmêmali Hounmenou
Kossi Essona Gneyou
Romain Glélé Kakaï
spellingShingle Castro Gbêmêmali Hounmenou
Kossi Essona Gneyou
Romain Glélé Kakaï
An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression
Journal of Probability and Statistics
author_facet Castro Gbêmêmali Hounmenou
Kossi Essona Gneyou
Romain Glélé Kakaï
author_sort Castro Gbêmêmali Hounmenou
title An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression
title_short An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression
title_full An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression
title_fullStr An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression
title_full_unstemmed An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression
title_sort extension of the quadratic error function for learning imprecise data in multivariate nonlinear regression
publisher Hindawi Limited
series Journal of Probability and Statistics
issn 1687-952X
1687-9538
publishDate 2020-01-01
description Multivariate noises in the learning process are most of the time supposed to follow a standard multivariate normal distribution. This hypothesis does not often hold in many real-world situations. In this paper, we consider an approach based on multivariate skew-normal distribution. It allows for a multiple continuous variation from normality to nonnormality. We give an extension of the generalized least squares error function in a context of multivariate nonlinear regression to learn imprecise data. The simulation study and application case on real datasets conducted and based on multilayer perceptron neural networks (MLP) with bivariate continuous response and asymmetric revealed a significant gain in precision using the new quadratic error function for these types of data rather than using a classical generalized least squares error function having any covariance matrix.
url http://dx.doi.org/10.1155/2020/9187503
work_keys_str_mv AT castrogbememalihounmenou anextensionofthequadraticerrorfunctionforlearningimprecisedatainmultivariatenonlinearregression
AT kossiessonagneyou anextensionofthequadraticerrorfunctionforlearningimprecisedatainmultivariatenonlinearregression
AT romainglelekakai anextensionofthequadraticerrorfunctionforlearningimprecisedatainmultivariatenonlinearregression
AT castrogbememalihounmenou extensionofthequadraticerrorfunctionforlearningimprecisedatainmultivariatenonlinearregression
AT kossiessonagneyou extensionofthequadraticerrorfunctionforlearningimprecisedatainmultivariatenonlinearregression
AT romainglelekakai extensionofthequadraticerrorfunctionforlearningimprecisedatainmultivariatenonlinearregression
_version_ 1715165439479250944