An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression
Multivariate noises in the learning process are most of the time supposed to follow a standard multivariate normal distribution. This hypothesis does not often hold in many real-world situations. In this paper, we consider an approach based on multivariate skew-normal distribution. It allows for a m...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Journal of Probability and Statistics |
Online Access: | http://dx.doi.org/10.1155/2020/9187503 |
id |
doaj-31d43ed94f1b4ef5b3b99547bac4a5e9 |
---|---|
record_format |
Article |
spelling |
doaj-31d43ed94f1b4ef5b3b99547bac4a5e92020-11-25T03:36:41ZengHindawi LimitedJournal of Probability and Statistics1687-952X1687-95382020-01-01202010.1155/2020/91875039187503An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear RegressionCastro Gbêmêmali Hounmenou0Kossi Essona Gneyou1Romain Glélé Kakaï2Laboratoire de Biomathématiques et d’Estimations Forestières, Université d’Abomey-Calavi, Cotonou, BeninLaboratoire de Modélisations Mathématiques et Applications, Université de Lomé, Lome, TogoLaboratoire de Biomathématiques et d’Estimations Forestières, Université d’Abomey-Calavi, Cotonou, BeninMultivariate noises in the learning process are most of the time supposed to follow a standard multivariate normal distribution. This hypothesis does not often hold in many real-world situations. In this paper, we consider an approach based on multivariate skew-normal distribution. It allows for a multiple continuous variation from normality to nonnormality. We give an extension of the generalized least squares error function in a context of multivariate nonlinear regression to learn imprecise data. The simulation study and application case on real datasets conducted and based on multilayer perceptron neural networks (MLP) with bivariate continuous response and asymmetric revealed a significant gain in precision using the new quadratic error function for these types of data rather than using a classical generalized least squares error function having any covariance matrix.http://dx.doi.org/10.1155/2020/9187503 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Castro Gbêmêmali Hounmenou Kossi Essona Gneyou Romain Glélé Kakaï |
spellingShingle |
Castro Gbêmêmali Hounmenou Kossi Essona Gneyou Romain Glélé Kakaï An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression Journal of Probability and Statistics |
author_facet |
Castro Gbêmêmali Hounmenou Kossi Essona Gneyou Romain Glélé Kakaï |
author_sort |
Castro Gbêmêmali Hounmenou |
title |
An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression |
title_short |
An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression |
title_full |
An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression |
title_fullStr |
An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression |
title_full_unstemmed |
An Extension of the Quadratic Error Function for Learning Imprecise Data in Multivariate Nonlinear Regression |
title_sort |
extension of the quadratic error function for learning imprecise data in multivariate nonlinear regression |
publisher |
Hindawi Limited |
series |
Journal of Probability and Statistics |
issn |
1687-952X 1687-9538 |
publishDate |
2020-01-01 |
description |
Multivariate noises in the learning process are most of the time supposed to follow a standard multivariate normal distribution. This hypothesis does not often hold in many real-world situations. In this paper, we consider an approach based on multivariate skew-normal distribution. It allows for a multiple continuous variation from normality to nonnormality. We give an extension of the generalized least squares error function in a context of multivariate nonlinear regression to learn imprecise data. The simulation study and application case on real datasets conducted and based on multilayer perceptron neural networks (MLP) with bivariate continuous response and asymmetric revealed a significant gain in precision using the new quadratic error function for these types of data rather than using a classical generalized least squares error function having any covariance matrix. |
url |
http://dx.doi.org/10.1155/2020/9187503 |
work_keys_str_mv |
AT castrogbememalihounmenou anextensionofthequadraticerrorfunctionforlearningimprecisedatainmultivariatenonlinearregression AT kossiessonagneyou anextensionofthequadraticerrorfunctionforlearningimprecisedatainmultivariatenonlinearregression AT romainglelekakai anextensionofthequadraticerrorfunctionforlearningimprecisedatainmultivariatenonlinearregression AT castrogbememalihounmenou extensionofthequadraticerrorfunctionforlearningimprecisedatainmultivariatenonlinearregression AT kossiessonagneyou extensionofthequadraticerrorfunctionforlearningimprecisedatainmultivariatenonlinearregression AT romainglelekakai extensionofthequadraticerrorfunctionforlearningimprecisedatainmultivariatenonlinearregression |
_version_ |
1715165439479250944 |