DNA punch cards for storing data on native DNA sequences via enzymatic nicking
Current synthetic DNA-based data storage systems have high recording costs, read-write latency and error-rates that make them uncompetitive compared to traditional digital storage. The authors use nicks in native DNA to encode data in parallel and create access sites for in-memory computations.
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2020-04-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-020-15588-z |
Summary: | Current synthetic DNA-based data storage systems have high recording costs, read-write latency and error-rates that make them uncompetitive compared to traditional digital storage. The authors use nicks in native DNA to encode data in parallel and create access sites for in-memory computations. |
---|---|
ISSN: | 2041-1723 |