Improving the Contrast of Pseudothermal Ghost Images Based on the Measured Signal Distribution of Speckle Fields

In this study, we examine the quality of microscale ghost images as a function of the measured histographic signal distribution of the speckle fields from a nonuniform pseudothermal light source. This research shows that the distribution of the detected signal level on each pixel of the camera plays...

Full description

Bibliographic Details
Main Authors: Zhe Sun, Frederik Tuitje, Christian Spielmann
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/6/2621
Description
Summary:In this study, we examine the quality of microscale ghost images as a function of the measured histographic signal distribution of the speckle fields from a nonuniform pseudothermal light source. This research shows that the distribution of the detected signal level on each pixel of the camera plays a significant role in improving the contrast-to-noise ratio (CNR) of pseudothermal ghost imaging. To our knowledge, the scaling of CNR with different pixel intensity distributions of the speckle fields is observed for the first time in the field of pseudothermal microscale ghost imaging. The experimental observations are in very good agreement with numerical analysis. Based on these findings, we can predict the settings for light sources that will maximize the CNR of microscale ghost images.
ISSN:2076-3417