Understanding Clinicians’ Adoption of Mobile Health Tools: A Qualitative Review of the Most Used Frameworks

BackgroundAlthough there is a push toward encouraging mobile health (mHealth) adoption to harness its potential, there are many challenges that sometimes go beyond the technology to involve other elements such as social, cultural, and organizational factors. Objec...

Full description

Bibliographic Details
Main Authors: Jacob, Christine, Sanchez-Vazquez, Antonio, Ivory, Chris
Format: Article
Language:English
Published: JMIR Publications 2020-07-01
Series:JMIR mHealth and uHealth
Online Access:https://mhealth.jmir.org/2020/7/e18072
id doaj-319984828b9747e1a839a24efad8a926
record_format Article
spelling doaj-319984828b9747e1a839a24efad8a9262021-05-02T19:28:45ZengJMIR PublicationsJMIR mHealth and uHealth2291-52222020-07-0187e1807210.2196/18072Understanding Clinicians’ Adoption of Mobile Health Tools: A Qualitative Review of the Most Used FrameworksJacob, ChristineSanchez-Vazquez, AntonioIvory, Chris BackgroundAlthough there is a push toward encouraging mobile health (mHealth) adoption to harness its potential, there are many challenges that sometimes go beyond the technology to involve other elements such as social, cultural, and organizational factors. ObjectiveThis review aimed to explore which frameworks are used the most, to understand clinicians’ adoption of mHealth as well as to identify potential shortcomings in these frameworks. Highlighting these gaps and the main factors that were not specifically covered in the most frequently used frameworks will assist future researchers to include all relevant key factors. MethodsThis review was an in-depth subanalysis of a larger systematic review that included research papers published between 2008 and 2018 and focused on the social, organizational, and technical factors impacting clinicians’ adoption of mHealth. The initial systematic review included 171 studies, of which 50 studies used a theoretical framework. These 50 studies are the subject of this qualitative review, reflecting further on the frameworks used and how these can help future researchers design studies that investigate the topic of mHealth adoption more robustly. ResultsThe most commonly used frameworks were different forms of extensions of the Technology Acceptance Model (TAM; 17/50, 34%), the diffusion of innovation theory (DOI; 8/50, 16%), and different forms of extensions of the unified theory of acceptance and use of technology (6/50, 12%). Some studies used a combination of the TAM and DOI frameworks (3/50, 6%), whereas others used the consolidated framework for implementation research (3/50, 6%) and sociotechnical systems (STS) theory (2/50, 4%). The factors cited by more than 20% of the studies were usefulness, output quality, ease of use, technical support, data privacy, self-efficacy, attitude, organizational inner setting, training, leadership engagement, workload, and workflow fit. Most factors could be linked to one framework or another, but there was no single framework that could adequately cover all relevant and specific factors without some expansion. ConclusionsHealth care technologies are generally more complex than tools that address individual user needs as they usually support patients with comorbidities who are typically treated by multidisciplinary teams who might even work in different health care organizations. This special nature of how the health care sector operates and its highly regulated nature, the usual budget deficits, and the interdependence between health care organizations necessitate some crucial expansions to existing theoretical frameworks usually used when studying adoption. We propose a shift toward theoretical frameworks that take into account implementation challenges that factor in the complexity of the sociotechnical structure of health care organizations and the interplay between the technical, social, and organizational aspects. Our consolidated framework offers recommendations on which factors to include when investigating clinicians’ adoption of mHealth, taking into account all three aspects.https://mhealth.jmir.org/2020/7/e18072
collection DOAJ
language English
format Article
sources DOAJ
author Jacob, Christine
Sanchez-Vazquez, Antonio
Ivory, Chris
spellingShingle Jacob, Christine
Sanchez-Vazquez, Antonio
Ivory, Chris
Understanding Clinicians’ Adoption of Mobile Health Tools: A Qualitative Review of the Most Used Frameworks
JMIR mHealth and uHealth
author_facet Jacob, Christine
Sanchez-Vazquez, Antonio
Ivory, Chris
author_sort Jacob, Christine
title Understanding Clinicians’ Adoption of Mobile Health Tools: A Qualitative Review of the Most Used Frameworks
title_short Understanding Clinicians’ Adoption of Mobile Health Tools: A Qualitative Review of the Most Used Frameworks
title_full Understanding Clinicians’ Adoption of Mobile Health Tools: A Qualitative Review of the Most Used Frameworks
title_fullStr Understanding Clinicians’ Adoption of Mobile Health Tools: A Qualitative Review of the Most Used Frameworks
title_full_unstemmed Understanding Clinicians’ Adoption of Mobile Health Tools: A Qualitative Review of the Most Used Frameworks
title_sort understanding clinicians’ adoption of mobile health tools: a qualitative review of the most used frameworks
publisher JMIR Publications
series JMIR mHealth and uHealth
issn 2291-5222
publishDate 2020-07-01
description BackgroundAlthough there is a push toward encouraging mobile health (mHealth) adoption to harness its potential, there are many challenges that sometimes go beyond the technology to involve other elements such as social, cultural, and organizational factors. ObjectiveThis review aimed to explore which frameworks are used the most, to understand clinicians’ adoption of mHealth as well as to identify potential shortcomings in these frameworks. Highlighting these gaps and the main factors that were not specifically covered in the most frequently used frameworks will assist future researchers to include all relevant key factors. MethodsThis review was an in-depth subanalysis of a larger systematic review that included research papers published between 2008 and 2018 and focused on the social, organizational, and technical factors impacting clinicians’ adoption of mHealth. The initial systematic review included 171 studies, of which 50 studies used a theoretical framework. These 50 studies are the subject of this qualitative review, reflecting further on the frameworks used and how these can help future researchers design studies that investigate the topic of mHealth adoption more robustly. ResultsThe most commonly used frameworks were different forms of extensions of the Technology Acceptance Model (TAM; 17/50, 34%), the diffusion of innovation theory (DOI; 8/50, 16%), and different forms of extensions of the unified theory of acceptance and use of technology (6/50, 12%). Some studies used a combination of the TAM and DOI frameworks (3/50, 6%), whereas others used the consolidated framework for implementation research (3/50, 6%) and sociotechnical systems (STS) theory (2/50, 4%). The factors cited by more than 20% of the studies were usefulness, output quality, ease of use, technical support, data privacy, self-efficacy, attitude, organizational inner setting, training, leadership engagement, workload, and workflow fit. Most factors could be linked to one framework or another, but there was no single framework that could adequately cover all relevant and specific factors without some expansion. ConclusionsHealth care technologies are generally more complex than tools that address individual user needs as they usually support patients with comorbidities who are typically treated by multidisciplinary teams who might even work in different health care organizations. This special nature of how the health care sector operates and its highly regulated nature, the usual budget deficits, and the interdependence between health care organizations necessitate some crucial expansions to existing theoretical frameworks usually used when studying adoption. We propose a shift toward theoretical frameworks that take into account implementation challenges that factor in the complexity of the sociotechnical structure of health care organizations and the interplay between the technical, social, and organizational aspects. Our consolidated framework offers recommendations on which factors to include when investigating clinicians’ adoption of mHealth, taking into account all three aspects.
url https://mhealth.jmir.org/2020/7/e18072
work_keys_str_mv AT jacobchristine understandingcliniciansadoptionofmobilehealthtoolsaqualitativereviewofthemostusedframeworks
AT sanchezvazquezantonio understandingcliniciansadoptionofmobilehealthtoolsaqualitativereviewofthemostusedframeworks
AT ivorychris understandingcliniciansadoptionofmobilehealthtoolsaqualitativereviewofthemostusedframeworks
_version_ 1721488180488699904