The studies on $$Z \rightarrow \Upsilon (1S)+g+g$$ Z→Υ(1S)+g+g at the next-to-leading-order QCD accuracy

Abstract In this paper, we carry out the next-to-leading-order (NLO) studies on $$Z \rightarrow \Upsilon (1S)+g+g$$ Z→Υ(1S)+g+g via the color-singlet (CS) $$b{\bar{b}}$$ bb¯ state. We find the newly calculated NLO QCD corrections to this process can significantly influence its leading-order (LO) res...

Full description

Bibliographic Details
Main Author: Zhan Sun
Format: Article
Language:English
Published: SpringerOpen 2020-04-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-020-7873-2
id doaj-3186fa6a5e3d45b7849c6941efff0c74
record_format Article
spelling doaj-3186fa6a5e3d45b7849c6941efff0c742020-11-25T03:18:18ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522020-04-018041710.1140/epjc/s10052-020-7873-2The studies on $$Z \rightarrow \Upsilon (1S)+g+g$$ Z→Υ(1S)+g+g at the next-to-leading-order QCD accuracyZhan Sun0Department of Physics, Guizhou Minzu UniversityAbstract In this paper, we carry out the next-to-leading-order (NLO) studies on $$Z \rightarrow \Upsilon (1S)+g+g$$ Z→Υ(1S)+g+g via the color-singlet (CS) $$b{\bar{b}}$$ bb¯ state. We find the newly calculated NLO QCD corrections to this process can significantly influence its leading-order (LO) results and greatly improve the dependence on the renormalization scale. By including the considerable feeddown contributions, the branching ratio $${\mathcal {B}}_{Z \rightarrow \Upsilon (1S)+g+g}$$ BZ→Υ(1S)+g+g is predicted to be (0.56–0.95) $$\times 10^{-6}$$ ×10-6 , which can reach up to 19–31$$\%$$ % of the LO predictions given by the CS dominant process $$Z \rightarrow \Upsilon (1S)+b+{\bar{b}}$$ Z→Υ(1S)+b+b¯ . Moreover, $$Z \rightarrow \Upsilon (1S)+g+g$$ Z→Υ(1S)+g+g also seriously affects the CS predictions on the $$\Upsilon (1S)$$ Υ(1S) energy distributions, especially when z is relatively small. In summary, for the inclusive $$\Upsilon (1S)$$ Υ(1S) productions in Z decay, besides $$Z \rightarrow \Upsilon (1S)+b+{\bar{b}}$$ Z→Υ(1S)+b+b¯ , the gluon radiation process $$Z \rightarrow \Upsilon (1S)+g+g$$ Z→Υ(1S)+g+g can provide indispensable contributions as well.http://link.springer.com/article/10.1140/epjc/s10052-020-7873-2
collection DOAJ
language English
format Article
sources DOAJ
author Zhan Sun
spellingShingle Zhan Sun
The studies on $$Z \rightarrow \Upsilon (1S)+g+g$$ Z→Υ(1S)+g+g at the next-to-leading-order QCD accuracy
European Physical Journal C: Particles and Fields
author_facet Zhan Sun
author_sort Zhan Sun
title The studies on $$Z \rightarrow \Upsilon (1S)+g+g$$ Z→Υ(1S)+g+g at the next-to-leading-order QCD accuracy
title_short The studies on $$Z \rightarrow \Upsilon (1S)+g+g$$ Z→Υ(1S)+g+g at the next-to-leading-order QCD accuracy
title_full The studies on $$Z \rightarrow \Upsilon (1S)+g+g$$ Z→Υ(1S)+g+g at the next-to-leading-order QCD accuracy
title_fullStr The studies on $$Z \rightarrow \Upsilon (1S)+g+g$$ Z→Υ(1S)+g+g at the next-to-leading-order QCD accuracy
title_full_unstemmed The studies on $$Z \rightarrow \Upsilon (1S)+g+g$$ Z→Υ(1S)+g+g at the next-to-leading-order QCD accuracy
title_sort studies on $$z \rightarrow \upsilon (1s)+g+g$$ z→υ(1s)+g+g at the next-to-leading-order qcd accuracy
publisher SpringerOpen
series European Physical Journal C: Particles and Fields
issn 1434-6044
1434-6052
publishDate 2020-04-01
description Abstract In this paper, we carry out the next-to-leading-order (NLO) studies on $$Z \rightarrow \Upsilon (1S)+g+g$$ Z→Υ(1S)+g+g via the color-singlet (CS) $$b{\bar{b}}$$ bb¯ state. We find the newly calculated NLO QCD corrections to this process can significantly influence its leading-order (LO) results and greatly improve the dependence on the renormalization scale. By including the considerable feeddown contributions, the branching ratio $${\mathcal {B}}_{Z \rightarrow \Upsilon (1S)+g+g}$$ BZ→Υ(1S)+g+g is predicted to be (0.56–0.95) $$\times 10^{-6}$$ ×10-6 , which can reach up to 19–31$$\%$$ % of the LO predictions given by the CS dominant process $$Z \rightarrow \Upsilon (1S)+b+{\bar{b}}$$ Z→Υ(1S)+b+b¯ . Moreover, $$Z \rightarrow \Upsilon (1S)+g+g$$ Z→Υ(1S)+g+g also seriously affects the CS predictions on the $$\Upsilon (1S)$$ Υ(1S) energy distributions, especially when z is relatively small. In summary, for the inclusive $$\Upsilon (1S)$$ Υ(1S) productions in Z decay, besides $$Z \rightarrow \Upsilon (1S)+b+{\bar{b}}$$ Z→Υ(1S)+b+b¯ , the gluon radiation process $$Z \rightarrow \Upsilon (1S)+g+g$$ Z→Υ(1S)+g+g can provide indispensable contributions as well.
url http://link.springer.com/article/10.1140/epjc/s10052-020-7873-2
work_keys_str_mv AT zhansun thestudiesonzrightarrowupsilon1sggzy1sggatthenexttoleadingorderqcdaccuracy
AT zhansun studiesonzrightarrowupsilon1sggzy1sggatthenexttoleadingorderqcdaccuracy
_version_ 1724627649133805568