On an integral transform

A formula of inversion is established for an integral transform whose kernel is the Bessel function Ju(kr) where r varies over the finite interval (0,a) and the order u is taken to be the eigenvalue parameter. When this parameter is large the Bessel function behaves for varying r like the power func...

Full description

Bibliographic Details
Main Author: D. Naylor
Format: Article
Language:English
Published: Hindawi Limited 1988-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171288000778
id doaj-317d5fed67484643a999a2dd2f995379
record_format Article
spelling doaj-317d5fed67484643a999a2dd2f9953792020-11-24T23:47:25ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251988-01-0111463564210.1155/S0161171288000778On an integral transformD. Naylor0University of Weste Ontario, Ontario, London, CanadaA formula of inversion is established for an integral transform whose kernel is the Bessel function Ju(kr) where r varies over the finite interval (0,a) and the order u is taken to be the eigenvalue parameter. When this parameter is large the Bessel function behaves for varying r like the power function ru and by relating the Bessel functions to their corresponding power functions the proof of the inversion formula can be reduced to one depending on the Mellin inversion theorem.http://dx.doi.org/10.1155/S0161171288000778integral transformsBessel functions.
collection DOAJ
language English
format Article
sources DOAJ
author D. Naylor
spellingShingle D. Naylor
On an integral transform
International Journal of Mathematics and Mathematical Sciences
integral transforms
Bessel functions.
author_facet D. Naylor
author_sort D. Naylor
title On an integral transform
title_short On an integral transform
title_full On an integral transform
title_fullStr On an integral transform
title_full_unstemmed On an integral transform
title_sort on an integral transform
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 1988-01-01
description A formula of inversion is established for an integral transform whose kernel is the Bessel function Ju(kr) where r varies over the finite interval (0,a) and the order u is taken to be the eigenvalue parameter. When this parameter is large the Bessel function behaves for varying r like the power function ru and by relating the Bessel functions to their corresponding power functions the proof of the inversion formula can be reduced to one depending on the Mellin inversion theorem.
topic integral transforms
Bessel functions.
url http://dx.doi.org/10.1155/S0161171288000778
work_keys_str_mv AT dnaylor onanintegraltransform
_version_ 1725489838056013824