Fully Automatic Operation Algorithm of Urban Rail Train Based on RBFNN Position Output Constrained Robust Adaptive Control

High parking accuracy, comfort and stability, and fast response speed are important indicators to measure the control performance of a fully automatic operation system. In this paper, aiming at the problem of low accuracy of the fully automatic operation control of urban rail trains, a radial basis...

Full description

Bibliographic Details
Main Authors: Junxia Yang, Youpeng Zhang, Yuxiang Jin
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/14/9/264
Description
Summary:High parking accuracy, comfort and stability, and fast response speed are important indicators to measure the control performance of a fully automatic operation system. In this paper, aiming at the problem of low accuracy of the fully automatic operation control of urban rail trains, a radial basis function neural network position output-constrained robust adaptive control algorithm based on train operation curve tracking is proposed. Firstly, on the basis of the mechanism of motion mechanics, the nonlinear dynamic model of train motion is established. Then, RBFNN is used to adaptively approximate and compensate for the additional resistance and unknown interference of the train model, and the basic resistance parameter adaptive mechanism is introduced to enhance the anti-interference ability and adaptability of the control system. Lastly, on the basis of the RBFNN position output-constrained robust adaptive control technology, the train can track the desired operation curve, thereby achieving the smooth operation between stations and accurate stopping. The simulation results show that the position output-constrained robust adaptive control algorithm based on RBFNN has good robustness and adaptability. In the case of system parameter uncertainty and external disturbance, the control system can ensure high-precision control and improve the ride comfort.
ISSN:1999-4893