Evaluating through mathematical modelling the power equipment busbars electrodynamic strength under sudden short-circuit conditions

The electrodynamic strength, as forces acting between the current-carrying electric circuits are exerted as long as the currents exist, and have the tendency of deformation and displacement of the circuits. In short-circuit regimes the strength in electrical equipment becomes severe. For instance, s...

Full description

Bibliographic Details
Main Authors: Bulucea Cornelia A., Brindusa Constantin, Nicola Doru A., Mastorakis Nikos E., Bulucea Carmen A., Dondon Philippe
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201821002004
Description
Summary:The electrodynamic strength, as forces acting between the current-carrying electric circuits are exerted as long as the currents exist, and have the tendency of deformation and displacement of the circuits. In short-circuit regimes the strength in electrical equipment becomes severe. For instance, short-circuits highly affect power transformers connected to power transmission lines. The effects are also strong because of mechanical deformations occurring in the power transformer connection part. In line with this idea, in this paper it is made an analytical study upon the a.c. single-phase and a.c. three-phase electric circuits, taking into account the current instantaneous maximum value. The paper also entails numerical simulations of electrodynamic strength in power transformer busbars under short-circuit conditions. MATLAB software, with its specific extensions, enable simulation models to generate the charts of the electrodynamic forces in the power transformer connection bars.
ISSN:2261-236X