A Lorentzian Stochastic Estimation for a Robust Iterative Multiframe Super-Resolution Reconstruction with Lorentzian-Tikhonov Regularization

Recently, there has been a great deal of work developing super-resolution reconstruction (SRR) algorithms. While many such algorithms have been proposed, the almost SRR estimations are based on L1 or L2 statistical norm estimation, therefore these SRR algorithms are usually very sensitive to their a...

Full description

Bibliographic Details
Main Authors: S. Jitapunkul, V. Patanavijit
Format: Article
Language:English
Published: SpringerOpen 2007-01-01
Series:EURASIP Journal on Advances in Signal Processing
Online Access:http://dx.doi.org/10.1155/2007/34821
Description
Summary:Recently, there has been a great deal of work developing super-resolution reconstruction (SRR) algorithms. While many such algorithms have been proposed, the almost SRR estimations are based on L1 or L2 statistical norm estimation, therefore these SRR algorithms are usually very sensitive to their assumed noise model that limits their utility. The real noise models that corrupt the measure sequence are unknown; consequently, SRR algorithm using L1 or L2 norm may degrade the image sequence rather than enhance it. Therefore, the robust norm applicable to several noise and data models is desired in SRR algorithms. This paper first comprehensively reviews the SRR algorithms in this last decade and addresses their shortcomings, and latter proposes a novel robust SRR algorithm that can be applied on several noise models. The proposed SRR algorithm is based on the stochastic regularization technique of Bayesian MAP estimation by minimizing a cost function. For removing outliers in the data, the Lorentzian error norm is used for measuring the difference between the projected estimate of the high-resolution image and each low-resolution image. Moreover, Tikhonov regularization and Lorentzian-Tikhonov regularization are used to remove artifacts from the final answer and improve the rate of convergence. The experimental results confirm the effectiveness of our method and demonstrate its superiority to other super-resolution methods based on L1 and L2 norms for several noise models such as noiseless, additive white Gaussian noise (AWGN), poisson noise, salt and pepper noise, and speckle noise.
ISSN:1687-6172
1687-6180