Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total area

Abstract Let $$g=(g_{ij})$$ g=(gij) be a complete Riemmanian metric on $${\mathbb {R}}^2$$ R2 with finite total area and let $$I_g$$ Ig be the infimum of the quotient of the length of any closed simple curve $$\gamma $$ γ in $${\mathbb {R}}^2$$ R2 and the sum of the reciprocal of the areas of the re...

Full description

Bibliographic Details
Main Author: Shu-Yu Hsu
Format: Article
Language:English
Published: World Scientific Publishing 2018-09-01
Series:Bulletin of Mathematical Sciences
Subjects:
Online Access:http://link.springer.com/article/10.1007/s13373-018-0131-3
id doaj-3154a208c83148638e7a77602cca1c55
record_format Article
spelling doaj-3154a208c83148638e7a77602cca1c552020-11-25T00:14:39ZengWorld Scientific PublishingBulletin of Mathematical Sciences1664-36071664-36152018-09-018360361710.1007/s13373-018-0131-3Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total areaShu-Yu Hsu0Department of Mathematics, National Chung Cheng UniversityAbstract Let $$g=(g_{ij})$$ g=(gij) be a complete Riemmanian metric on $${\mathbb {R}}^2$$ R2 with finite total area and let $$I_g$$ Ig be the infimum of the quotient of the length of any closed simple curve $$\gamma $$ γ in $${\mathbb {R}}^2$$ R2 and the sum of the reciprocal of the areas of the regions inside and outside $$\gamma $$ γ respectively with respect to the metric g. Under some mild growth conditions on g we prove the existence of a minimizer for $$I_g$$ Ig . As a corollary we obtain a proof for the existence of a minimizer for $$I_{g(t)}$$ Ig(t) for any $$0<t<T$$ 0<t<T when the metric $$g(t)=g_{ij}(\cdot ,t)=u\delta _{ij}$$ g(t)=gij(·,t)=uδij is the maximal solution of the Ricci flow equation $$\partial g_{ij}/\partial t=-2R_{ij}$$ ∂gij/∂t=-2Rij on $${\mathbb {R}}^2\times (0,T)$$ R2×(0,T) (Daskalopoulos and Hamilton in Commun Anal Geom 12(1):143–164, 2004) where $$T>0$$ T>0 is the extinction time of the solution. This existence of minimizer result is assumed and used without proof by Daskalopoulos and Hamilton (2004).http://link.springer.com/article/10.1007/s13373-018-0131-3Existence of minimizerIsoperimetric ratioComplete Riemannian metric on $${\mathbb {R}}^2$$ R 2Finite total area
collection DOAJ
language English
format Article
sources DOAJ
author Shu-Yu Hsu
spellingShingle Shu-Yu Hsu
Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total area
Bulletin of Mathematical Sciences
Existence of minimizer
Isoperimetric ratio
Complete Riemannian metric on $${\mathbb {R}}^2$$ R 2
Finite total area
author_facet Shu-Yu Hsu
author_sort Shu-Yu Hsu
title Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total area
title_short Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total area
title_full Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total area
title_fullStr Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total area
title_full_unstemmed Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total area
title_sort minimizer of an isoperimetric ratio on a metric on $${\mathbb {r}}^2$$ r2 with finite total area
publisher World Scientific Publishing
series Bulletin of Mathematical Sciences
issn 1664-3607
1664-3615
publishDate 2018-09-01
description Abstract Let $$g=(g_{ij})$$ g=(gij) be a complete Riemmanian metric on $${\mathbb {R}}^2$$ R2 with finite total area and let $$I_g$$ Ig be the infimum of the quotient of the length of any closed simple curve $$\gamma $$ γ in $${\mathbb {R}}^2$$ R2 and the sum of the reciprocal of the areas of the regions inside and outside $$\gamma $$ γ respectively with respect to the metric g. Under some mild growth conditions on g we prove the existence of a minimizer for $$I_g$$ Ig . As a corollary we obtain a proof for the existence of a minimizer for $$I_{g(t)}$$ Ig(t) for any $$0<t<T$$ 0<t<T when the metric $$g(t)=g_{ij}(\cdot ,t)=u\delta _{ij}$$ g(t)=gij(·,t)=uδij is the maximal solution of the Ricci flow equation $$\partial g_{ij}/\partial t=-2R_{ij}$$ ∂gij/∂t=-2Rij on $${\mathbb {R}}^2\times (0,T)$$ R2×(0,T) (Daskalopoulos and Hamilton in Commun Anal Geom 12(1):143–164, 2004) where $$T>0$$ T>0 is the extinction time of the solution. This existence of minimizer result is assumed and used without proof by Daskalopoulos and Hamilton (2004).
topic Existence of minimizer
Isoperimetric ratio
Complete Riemannian metric on $${\mathbb {R}}^2$$ R 2
Finite total area
url http://link.springer.com/article/10.1007/s13373-018-0131-3
work_keys_str_mv AT shuyuhsu minimizerofanisoperimetricratioonametriconmathbbr2r2withfinitetotalarea
_version_ 1725389386259890176