Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total area
Abstract Let $$g=(g_{ij})$$ g=(gij) be a complete Riemmanian metric on $${\mathbb {R}}^2$$ R2 with finite total area and let $$I_g$$ Ig be the infimum of the quotient of the length of any closed simple curve $$\gamma $$ γ in $${\mathbb {R}}^2$$ R2 and the sum of the reciprocal of the areas of the re...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
World Scientific Publishing
2018-09-01
|
Series: | Bulletin of Mathematical Sciences |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/s13373-018-0131-3 |
id |
doaj-3154a208c83148638e7a77602cca1c55 |
---|---|
record_format |
Article |
spelling |
doaj-3154a208c83148638e7a77602cca1c552020-11-25T00:14:39ZengWorld Scientific PublishingBulletin of Mathematical Sciences1664-36071664-36152018-09-018360361710.1007/s13373-018-0131-3Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total areaShu-Yu Hsu0Department of Mathematics, National Chung Cheng UniversityAbstract Let $$g=(g_{ij})$$ g=(gij) be a complete Riemmanian metric on $${\mathbb {R}}^2$$ R2 with finite total area and let $$I_g$$ Ig be the infimum of the quotient of the length of any closed simple curve $$\gamma $$ γ in $${\mathbb {R}}^2$$ R2 and the sum of the reciprocal of the areas of the regions inside and outside $$\gamma $$ γ respectively with respect to the metric g. Under some mild growth conditions on g we prove the existence of a minimizer for $$I_g$$ Ig . As a corollary we obtain a proof for the existence of a minimizer for $$I_{g(t)}$$ Ig(t) for any $$0<t<T$$ 0<t<T when the metric $$g(t)=g_{ij}(\cdot ,t)=u\delta _{ij}$$ g(t)=gij(·,t)=uδij is the maximal solution of the Ricci flow equation $$\partial g_{ij}/\partial t=-2R_{ij}$$ ∂gij/∂t=-2Rij on $${\mathbb {R}}^2\times (0,T)$$ R2×(0,T) (Daskalopoulos and Hamilton in Commun Anal Geom 12(1):143–164, 2004) where $$T>0$$ T>0 is the extinction time of the solution. This existence of minimizer result is assumed and used without proof by Daskalopoulos and Hamilton (2004).http://link.springer.com/article/10.1007/s13373-018-0131-3Existence of minimizerIsoperimetric ratioComplete Riemannian metric on $${\mathbb {R}}^2$$ R 2Finite total area |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Shu-Yu Hsu |
spellingShingle |
Shu-Yu Hsu Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total area Bulletin of Mathematical Sciences Existence of minimizer Isoperimetric ratio Complete Riemannian metric on $${\mathbb {R}}^2$$ R 2 Finite total area |
author_facet |
Shu-Yu Hsu |
author_sort |
Shu-Yu Hsu |
title |
Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total area |
title_short |
Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total area |
title_full |
Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total area |
title_fullStr |
Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total area |
title_full_unstemmed |
Minimizer of an isoperimetric ratio on a metric on $${\mathbb {R}}^2$$ R2 with finite total area |
title_sort |
minimizer of an isoperimetric ratio on a metric on $${\mathbb {r}}^2$$ r2 with finite total area |
publisher |
World Scientific Publishing |
series |
Bulletin of Mathematical Sciences |
issn |
1664-3607 1664-3615 |
publishDate |
2018-09-01 |
description |
Abstract Let $$g=(g_{ij})$$ g=(gij) be a complete Riemmanian metric on $${\mathbb {R}}^2$$ R2 with finite total area and let $$I_g$$ Ig be the infimum of the quotient of the length of any closed simple curve $$\gamma $$ γ in $${\mathbb {R}}^2$$ R2 and the sum of the reciprocal of the areas of the regions inside and outside $$\gamma $$ γ respectively with respect to the metric g. Under some mild growth conditions on g we prove the existence of a minimizer for $$I_g$$ Ig . As a corollary we obtain a proof for the existence of a minimizer for $$I_{g(t)}$$ Ig(t) for any $$0<t<T$$ 0<t<T when the metric $$g(t)=g_{ij}(\cdot ,t)=u\delta _{ij}$$ g(t)=gij(·,t)=uδij is the maximal solution of the Ricci flow equation $$\partial g_{ij}/\partial t=-2R_{ij}$$ ∂gij/∂t=-2Rij on $${\mathbb {R}}^2\times (0,T)$$ R2×(0,T) (Daskalopoulos and Hamilton in Commun Anal Geom 12(1):143–164, 2004) where $$T>0$$ T>0 is the extinction time of the solution. This existence of minimizer result is assumed and used without proof by Daskalopoulos and Hamilton (2004). |
topic |
Existence of minimizer Isoperimetric ratio Complete Riemannian metric on $${\mathbb {R}}^2$$ R 2 Finite total area |
url |
http://link.springer.com/article/10.1007/s13373-018-0131-3 |
work_keys_str_mv |
AT shuyuhsu minimizerofanisoperimetricratioonametriconmathbbr2r2withfinitetotalarea |
_version_ |
1725389386259890176 |