A Redox-Controllable Molecular Switch Based on Weak Recognition of BPX26C6 at a Diphenylurea Station

The Na+ ion–assisted recognition of urea derivatives by BPX26C6 has allowed the construction of a redox-controllable [2]rotaxane-type molecular switch based on two originally very weakly interacting host/guest systems. Using NOBF4 to oxidize the triarylamine terminus into a corresponding radical cat...

Full description

Bibliographic Details
Main Authors: Jia-Cheng Chang, Chien-Chen Lai, Sheng-Hsien Chiu
Format: Article
Language:English
Published: MDPI AG 2015-01-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/20/2/1775
Description
Summary:The Na+ ion–assisted recognition of urea derivatives by BPX26C6 has allowed the construction of a redox-controllable [2]rotaxane-type molecular switch based on two originally very weakly interacting host/guest systems. Using NOBF4 to oxidize the triarylamine terminus into a corresponding radical cation attracted the macrocyclic component toward its adjacent carbamate station; subsequent addition of Zn powder moved the macrocyclic component back to its urea station.
ISSN:1420-3049