RF Tomography in Free Space: Experimental Validation of the Forward Model and an Inversion Algorithm Based on the Algebraic Reconstruction Technique

Radio-frequency tomography was originally proposed to image underground cavities. Its flexible forward model can be used in free-space by choosing an appropriate dyadic Green's function and can be translated in the microwave domain. Experimental data are used to validate a novel inversion schem...

Full description

Bibliographic Details
Main Authors: V. Picco, T. Negishi, S. Nishikata, D. Spitzer, D. Erricolo
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2013/528347
Description
Summary:Radio-frequency tomography was originally proposed to image underground cavities. Its flexible forward model can be used in free-space by choosing an appropriate dyadic Green's function and can be translated in the microwave domain. Experimental data are used to validate a novel inversion scheme, based on the algebraic reconstruction technique. The proposed method is improved by introducing physical bounds on the solution returned. As a result, the images of the dielectric permittivity profiles obtained are superior in quality to the ones obtained using classical regularization approaches such as the truncated singular value decomposition. The results from three experimental case studies are presented and discussed.
ISSN:1687-5869
1687-5877