Microbial mineralization of cellulose in frozen soils

High latitude soils can store around 40 % of the Earth’s soil carbon. Here, the authors add 13C-labeled cellulose to frozen mesocosms of boreal forest soils and find that cellulose biopolymers are hydrolysed under frozen conditions and therefore contribute to the slow degradation of soil organic mat...

Full description

Bibliographic Details
Main Authors: Javier H. Segura, Mats B. Nilsson, Mahsa Haei, Tobias Sparrman, Jyri-Pekka Mikkola, John Gräsvik, Jürgen Schleucher, Mats G. Öquist
Format: Article
Language:English
Published: Nature Publishing Group 2017-10-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-017-01230-y
id doaj-313fa3ce5bdc48bcbc97db9189e645b5
record_format Article
spelling doaj-313fa3ce5bdc48bcbc97db9189e645b52021-05-11T07:57:21ZengNature Publishing GroupNature Communications2041-17232017-10-01811810.1038/s41467-017-01230-yMicrobial mineralization of cellulose in frozen soilsJavier H. Segura0Mats B. Nilsson1Mahsa Haei2Tobias Sparrman3Jyri-Pekka Mikkola4John Gräsvik5Jürgen Schleucher6Mats G. Öquist7Department of Forest Ecology & Management, Swedish University of Agricultural Sciences (SLU)Department of Forest Ecology & Management, Swedish University of Agricultural Sciences (SLU)Department of Forest Ecology & Management, Swedish University of Agricultural Sciences (SLU)Department of Chemistry, Umeå UniversityDepartment of Chemistry, Umeå UniversityIggesund PaperboardDepartment of Medical Biochemistry and Biophysics, Umeå UniversityDepartment of Forest Ecology & Management, Swedish University of Agricultural Sciences (SLU)High latitude soils can store around 40 % of the Earth’s soil carbon. Here, the authors add 13C-labeled cellulose to frozen mesocosms of boreal forest soils and find that cellulose biopolymers are hydrolysed under frozen conditions and therefore contribute to the slow degradation of soil organic matter.https://doi.org/10.1038/s41467-017-01230-y
collection DOAJ
language English
format Article
sources DOAJ
author Javier H. Segura
Mats B. Nilsson
Mahsa Haei
Tobias Sparrman
Jyri-Pekka Mikkola
John Gräsvik
Jürgen Schleucher
Mats G. Öquist
spellingShingle Javier H. Segura
Mats B. Nilsson
Mahsa Haei
Tobias Sparrman
Jyri-Pekka Mikkola
John Gräsvik
Jürgen Schleucher
Mats G. Öquist
Microbial mineralization of cellulose in frozen soils
Nature Communications
author_facet Javier H. Segura
Mats B. Nilsson
Mahsa Haei
Tobias Sparrman
Jyri-Pekka Mikkola
John Gräsvik
Jürgen Schleucher
Mats G. Öquist
author_sort Javier H. Segura
title Microbial mineralization of cellulose in frozen soils
title_short Microbial mineralization of cellulose in frozen soils
title_full Microbial mineralization of cellulose in frozen soils
title_fullStr Microbial mineralization of cellulose in frozen soils
title_full_unstemmed Microbial mineralization of cellulose in frozen soils
title_sort microbial mineralization of cellulose in frozen soils
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2017-10-01
description High latitude soils can store around 40 % of the Earth’s soil carbon. Here, the authors add 13C-labeled cellulose to frozen mesocosms of boreal forest soils and find that cellulose biopolymers are hydrolysed under frozen conditions and therefore contribute to the slow degradation of soil organic matter.
url https://doi.org/10.1038/s41467-017-01230-y
work_keys_str_mv AT javierhsegura microbialmineralizationofcelluloseinfrozensoils
AT matsbnilsson microbialmineralizationofcelluloseinfrozensoils
AT mahsahaei microbialmineralizationofcelluloseinfrozensoils
AT tobiassparrman microbialmineralizationofcelluloseinfrozensoils
AT jyripekkamikkola microbialmineralizationofcelluloseinfrozensoils
AT johngrasvik microbialmineralizationofcelluloseinfrozensoils
AT jurgenschleucher microbialmineralizationofcelluloseinfrozensoils
AT matsgoquist microbialmineralizationofcelluloseinfrozensoils
_version_ 1721451254841868288