An Antiforensic Method against AMR Compression Detection

Adaptive multirate (AMR) compression audio has been exploited as an effective forensic evidence to justify audio authenticity. Little consideration has been given, however, to antiforensic techniques capable of fooling AMR compression forensic algorithms. In this paper, we present an antiforensic me...

Full description

Bibliographic Details
Main Authors: Diqun Yan, Xiaowen Li, Li Dong, Rangding Wang
Format: Article
Language:English
Published: Hindawi-Wiley 2020-01-01
Series:Security and Communication Networks
Online Access:http://dx.doi.org/10.1155/2020/8849902
Description
Summary:Adaptive multirate (AMR) compression audio has been exploited as an effective forensic evidence to justify audio authenticity. Little consideration has been given, however, to antiforensic techniques capable of fooling AMR compression forensic algorithms. In this paper, we present an antiforensic method based on generative adversarial network (GAN) to attack AMR compression detectors. The GAN framework is utilized to modify double AMR compressed audio to have the underlying statistics of single compressed one. Three state-of-the-art detectors of AMR compression are selected as the targets to be attacked. The experimental results demonstrate that the proposed method is capable of removing the forensically detectable artifacts of AMR compression under various ratios with an average successful attack rate about 94.75%, which means the modified audios generated by our well-trained generator can treat the forensic detector effectively. Moreover, we show that the perceptual quality of the generated AMR audio is well preserved.
ISSN:1939-0114
1939-0122