Teaching Physics for Computer Science Students in Higher Education During the COVID-19 Pandemic: A Fully Internet-Supported Course

The COVID-19 pandemic has modified and diversified the ways that students receive education. During confinements, complex courses integrating previous knowledge must be carefully designed and implemented to effectively replace the elements present in face-to-face learning to improve the students’ ex...

Full description

Bibliographic Details
Main Author: Francisco Delgado
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Future Internet
Subjects:
Online Access:https://www.mdpi.com/1999-5903/13/2/35
Description
Summary:The COVID-19 pandemic has modified and diversified the ways that students receive education. During confinements, complex courses integrating previous knowledge must be carefully designed and implemented to effectively replace the elements present in face-to-face learning to improve the students’ experience. This work assesses the implementation of a digital-learning physics course for computer science students in a skill-based education program in higher education. The assessment was useful for the institution to evaluate if the digital strategy implemented in the course fulfilled the original premises and objectives. The analyses performed provide useful knowledge of theoretical and operational actions applied in this methodology that could be adapted to similar courses for the younger generations in this university. COVID-19 confinement will continue in Mexico in 2021. This assessment resulted in a positive evaluation of the digital strategy being followed, which can be continued while the contingency lasts. Three teachers came together to design math, physics, and computational sciences content for various sections of a physics course. The analysis was developed and implemented according to an institutional digital delivery model for the COVID-19 pandemic. Elements related to attendance, digital access, performance distribution by gender, activity types, and the course learning sections were considered. The analysis was performed with some techniques found in the literature for small groups, complemented when necessary by standard statistical tests to discern meaningful trends. A primary goal was to assess skill-based learning in the course delivered digitally due to the COVID-19 confinement. Furthermore, additional issues concerning the learning dynamics were searched, reported, and analyzed. Finally, the outcomes of an institutional exit survey collecting students’ opinions supported certain observed behaviors. The analysis produced meaningful evidence that the course’s skill-based development was well supported by the digital delivery during the confinement. Furthermore, differences in the students’ performances in the various course content sections proved statistically significant and are discussed in this work.
ISSN:1999-5903