Summary: | Self/nonself discrimination is an essential feature for pathogen recognition and graft rejection and is a ubiquitous phenomenon in many organisms. Filamentous fungi, such as Neurospora crassa, provide a model for analyses of population genetics/evolution of self/nonself recognition loci due to their haploid nature, small genomes and excellent genetic/genomic resources. In N. crassa, nonself discrimination during vegetative growth is determined by 11 heterokaryon incompatibility (het) loci. Cell fusion between strains that differ in allelic specificity at any of these het loci triggers a rapid programmed cell death response.In this study, we evaluated the evolution, population genetics and selective mechanisms operating at a nonself recognition complex consisting of two closely linked loci, het-c (NCU03493) and pin-c (NCU03494). The genomic position of pin-c next to het-c is unique to Neurospora/Sordaria species, and originated by gene duplication after divergence from other species within the Sordariaceae. The het-c pin-c alleles in N. crassa are in severe linkage disequilibrium and consist of three haplotypes, het-c1/pin-c1, het-c2/pin-c2 and het-c3/pin-c3, which are equally frequent in population samples and exhibit trans-species polymorphisms. The absence of recombinant haplotypes is correlated with divergence of the het-c/pin-c intergenic sequence. Tests for positive and balancing selection at het-c and pin-c support the conclusion that both of these loci are under non-neutral balancing selection; other regions of both genes appear to be under positive selection. Our data show that the het-c2/pin-c2 haplotype emerged by a recombination event between the het-c1/pin-c1 and het-c3/pin-c3 approximately 3-12 million years ago.These results support models by which loci that confer nonself discrimination form by the association of polymorphic genes with genes containing HET domains. Distinct allele classes can emerge by recombination and positive selection and are subsequently maintained by balancing selection and divergence of intergenic sequence resulting in recombination blocks between haplotypes.
|