The Development of a GIS Methodology to Identify Oxbows and Former Stream Meanders from LiDAR-Derived Digital Elevation Models

Anthropogenic development of floodplains and alteration to natural hydrological regimes have resulted in extensive loss of off-channel habitat. Interest has grown in restoring these habitats as an effective conservation strategy for numerous aquatic species. This study developed a process to reprodu...

Full description

Bibliographic Details
Main Authors: Courtney L. Zambory, Harvest Ellis, Clay L. Pierce, Kevin J. Roe, Michael J. Weber, Keith E. Schilling, Nathan C. Young
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/11/1/12
Description
Summary:Anthropogenic development of floodplains and alteration to natural hydrological regimes have resulted in extensive loss of off-channel habitat. Interest has grown in restoring these habitats as an effective conservation strategy for numerous aquatic species. This study developed a process to reproducibly identify areas of former stream meanders to assist future off-channel restoration site selections. Three watersheds in Iowa and Minnesota where off-channel restorations are currently being conducted to aid the conservation of the Topeka Shiner (<i>Notropis topeka</i>) were selected as the study area. Floodplain depressions were identified with LiDAR-derived digital elevation models, and their morphologic and topographic characteristics were described. Classification tree models were developed to distinguish relic streams and oxbows from other landscape features. All models demonstrated a strong ability to distinguish between target and non-target features with area under the receiver operator curve (AUC) values &#8805; 0.82 and correct classification rates &#8805; 0.88. Solidity, concavity, and mean height above channel metrics were among the first splits in all trees. To compensate for the noise associated with the final model designation, features were ranked by their conditional probability. The results of this study will provide conservation managers with an improved process to identify candidate restoration sites.
ISSN:2072-4292