TESTIN Induces Rapid Death and Suppresses Proliferation in Childhood B Acute Lymphoblastic Leukaemia Cells.

BACKGROUND:Childhood acute lymphoblastic leukaemia (ALL) is the most common malignancy in children. Despite high cure rates, side effects and late consequences of the intensive treatments are common. Unquestionably, the identification of new therapeutic targets will lead to safer, more effective tre...

Full description

Bibliographic Details
Main Authors: Robert J Weeks, Jackie L Ludgate, Gwenn LeMée, Ian M Morison
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4795691?pdf=render
id doaj-30f16ca82a1842dc8c33b65e3c9c6ea8
record_format Article
spelling doaj-30f16ca82a1842dc8c33b65e3c9c6ea82020-11-25T00:04:27ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-01113e015134110.1371/journal.pone.0151341TESTIN Induces Rapid Death and Suppresses Proliferation in Childhood B Acute Lymphoblastic Leukaemia Cells.Robert J WeeksJackie L LudgateGwenn LeMéeIan M MorisonBACKGROUND:Childhood acute lymphoblastic leukaemia (ALL) is the most common malignancy in children. Despite high cure rates, side effects and late consequences of the intensive treatments are common. Unquestionably, the identification of new therapeutic targets will lead to safer, more effective treatments. We identified TES promoter methylation and transcriptional silencing as a very common molecular abnormality in childhood ALL, irrespective of molecular subtype. The aims of the present study were to demonstrate that TES promoter methylation is aberrant, to determine the effects of TES re-expression in ALL, and to determine if those effects are mediated via TP53 activity. METHODS:Normal fetal and adult tissue DNA was isolated and TES promoter methylation determined by Sequenom MassARRAY. Quantitative RT-PCR and immunoblot were used to confirm re-expression of TES in ALL cell lines after 5'-aza-2'-deoxycytidine (decitabine) exposure or transfection with TES expression plasmids. The effects of TES re-expression on ALL cells were investigated using standard cell proliferation, cell death and cell cycle assays. RESULTS:In this study, we confirm that the TES promoter is unmethylated in normal adult and fetal tissues. We report that decitabine treatment of ALL cell lines results in demethylation of the TES promoter and attendant expression of TES mRNA. Re-expression of TESTIN protein in ALL cells using expression plasmid transfection results in rapid cell death or cell cycle arrest independent of TP53 activity. CONCLUSIONS:These results suggest that TES is aberrantly methylated in ALL and that re-expression of TESTIN has anti-leukaemia effects which point to novel therapeutic opportunities for childhood ALL.http://europepmc.org/articles/PMC4795691?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Robert J Weeks
Jackie L Ludgate
Gwenn LeMée
Ian M Morison
spellingShingle Robert J Weeks
Jackie L Ludgate
Gwenn LeMée
Ian M Morison
TESTIN Induces Rapid Death and Suppresses Proliferation in Childhood B Acute Lymphoblastic Leukaemia Cells.
PLoS ONE
author_facet Robert J Weeks
Jackie L Ludgate
Gwenn LeMée
Ian M Morison
author_sort Robert J Weeks
title TESTIN Induces Rapid Death and Suppresses Proliferation in Childhood B Acute Lymphoblastic Leukaemia Cells.
title_short TESTIN Induces Rapid Death and Suppresses Proliferation in Childhood B Acute Lymphoblastic Leukaemia Cells.
title_full TESTIN Induces Rapid Death and Suppresses Proliferation in Childhood B Acute Lymphoblastic Leukaemia Cells.
title_fullStr TESTIN Induces Rapid Death and Suppresses Proliferation in Childhood B Acute Lymphoblastic Leukaemia Cells.
title_full_unstemmed TESTIN Induces Rapid Death and Suppresses Proliferation in Childhood B Acute Lymphoblastic Leukaemia Cells.
title_sort testin induces rapid death and suppresses proliferation in childhood b acute lymphoblastic leukaemia cells.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2016-01-01
description BACKGROUND:Childhood acute lymphoblastic leukaemia (ALL) is the most common malignancy in children. Despite high cure rates, side effects and late consequences of the intensive treatments are common. Unquestionably, the identification of new therapeutic targets will lead to safer, more effective treatments. We identified TES promoter methylation and transcriptional silencing as a very common molecular abnormality in childhood ALL, irrespective of molecular subtype. The aims of the present study were to demonstrate that TES promoter methylation is aberrant, to determine the effects of TES re-expression in ALL, and to determine if those effects are mediated via TP53 activity. METHODS:Normal fetal and adult tissue DNA was isolated and TES promoter methylation determined by Sequenom MassARRAY. Quantitative RT-PCR and immunoblot were used to confirm re-expression of TES in ALL cell lines after 5'-aza-2'-deoxycytidine (decitabine) exposure or transfection with TES expression plasmids. The effects of TES re-expression on ALL cells were investigated using standard cell proliferation, cell death and cell cycle assays. RESULTS:In this study, we confirm that the TES promoter is unmethylated in normal adult and fetal tissues. We report that decitabine treatment of ALL cell lines results in demethylation of the TES promoter and attendant expression of TES mRNA. Re-expression of TESTIN protein in ALL cells using expression plasmid transfection results in rapid cell death or cell cycle arrest independent of TP53 activity. CONCLUSIONS:These results suggest that TES is aberrantly methylated in ALL and that re-expression of TESTIN has anti-leukaemia effects which point to novel therapeutic opportunities for childhood ALL.
url http://europepmc.org/articles/PMC4795691?pdf=render
work_keys_str_mv AT robertjweeks testininducesrapiddeathandsuppressesproliferationinchildhoodbacutelymphoblasticleukaemiacells
AT jackielludgate testininducesrapiddeathandsuppressesproliferationinchildhoodbacutelymphoblasticleukaemiacells
AT gwennlemee testininducesrapiddeathandsuppressesproliferationinchildhoodbacutelymphoblasticleukaemiacells
AT ianmmorison testininducesrapiddeathandsuppressesproliferationinchildhoodbacutelymphoblasticleukaemiacells
_version_ 1725429159855915008